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a b s t r a c t

Because single-photon emission computed tomography (SPECT) is one of the widely used nuclear
medicine imaging systems, it is extremely important to acquire high-quality images for diagnosis. In this
study, we designed a super-resolution (SR) technique using dense block-based deep convolutional neural
network (CNN) and evaluated the algorithm on real SPECT phantom images. To acquire the phantom
images, a real SPECT system using a99mTc source and two physical phantoms was used. To confirm the
image quality, the noise properties and visual quality metric evaluation parameters were calculated. The
results demonstrate that our proposed method delivers a more valid SR improvement by using dense
block-based deep CNNs as compared to conventional reconstruction techniques. In particular, when the
proposed method was used, the quantitative performance was improved from 1.2 to 5.0 times compared
to the result of using the conventional iterative reconstruction. Here, we confirmed the effects on the
image quality of the resulting SR image, and our proposed technique was shown to be effective for
nuclear medicine imaging.
© 2021 Korean Nuclear Society, Published by Elsevier Korea LLC. This is an open access article under the

CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Representative devices for nuclear medicine imaging include a
gamma camera and single photon emission computed tomography
(SPECT) that can acquire images from one or more directions using
a single photon-emitting nuclide, as well as positron emission to-
mography (PET), which uses a positron-emitting nuclide with a
relatively short half-life [1,2]. Fusion imaging devices such as PET/
computed tomography (CT), PET/magnetic resonance imaging
(MRI), SPECT/CT, and SPECT/MRI, which can simultaneously acquire
functional and anatomical images, have recently been developed
and are actively being used [3e7].

Images acquired using a single photon-based nuclear medicine
device have a crucial problem of a low spatial resolution and high
noise level owing to a low photon counting in the detector [8,9]. As
a result of comparing the imaging performances of nuclear medi-
cine devices, Jansen et al. reported that the sensitivity of clinical PET
l Science, Gachon University,

by Elsevier Korea LLC. This is an
and SPECT was ~3% and ~0.03%, respectively, and that the spatial
resolution was ~5 and ~10 mm [8]. In particular, because nuclear
medicine images use a significantly lower number of photons than
images using X-rays, a relatively high amount of noise is observed.
To remove such noise, a large number of radiopharmaceuticals are
used or a method for increasing the examination time is applied;
however, a large problem occurs in that the exposure dose of the
patient increases [10,11]. Because radiopharmaceuticals used for
examination have a physical half-life as radioactive isotopes and a
biological half-life when injected into the human body, the total
examination time cannot be extended indefinitely. In addition, in
accordance with the recommendations of the International Com-
mission on Radiological Protection, the proposed human exposure
dose to achieve an optimized defense is kept as low as possible.

Another method to improve the quality of nuclear medicine
images is to develop a new detector material with an excellent
performance. According to Lecoq, a scintillation type detector using
alkali-halide, oxide compounds, and pulling-down technology as
new nuclear medicine detector materials has been proposed [12].
In particular, research on the development of a detector using
room-temperature semiconductor materials such as cadmium zinc
telluride (CZT) or cadmium telluride (CdTe) has been actively
open access article under the CC BY-NC-ND license (http://creativecommons.org/
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conducted [13e15]. In a study by Lee et al. it was confirmed that the
spatial resolution and sensitivity characteristics were improved by
3.8- and 1.5-fold, respectively, compared to a general NaI(Tl) scin-
tillation detector when using a CdTe material-based detector in
nuclear medicine phantom images [13].

However, a relatively high cost is required to develop a detector
with good performance for nuclear medicine imaging. In addition,
photon-counting detector systems based on materials such as CZT
or CdTe have difficulties in maintaining their cooling. In addition,
the design of a highly efficient application-specific integrated cir-
cuit is difficult to achieve, and a high computing power is needed.
The most useful method to improve the characteristics of a nuclear
medicine image while overcoming these shortcomings is to use a
software algorithm. The super-resolution (SR) technique is widely
used in various imaging fields, and it has been announced that the
overall image quality is improved when compared to a conven-
tional algorithm [16e19].

The SR technique, which is the restoration of a high-resolution
(HR) image from a low-resolution (LR) image, can be written us-
ing Eq. (1) [20e22]:

y¼DBMxþ n; (1)

where y is the LR image that results from the HR image x, when
applying the degradation matrices including the subsampling
matrix D, blur matrix B, and geometric warp matrix M. In addition,
n represents a noise component. The larger the upscaling factor is,
the more highly ill-posed the problem is in recovering the details in
the SR image. The methods used for SR can be classified as 1) multi-
image-based SR and 2) example-based SR. Multi-image based SR is
a classical technique and is a method for generating an unknown
HR image by imposing a set of linear constraints over the LR images
obtained by subpixel shifting [23,24]. However, it is difficult to
expect high quality in a large upsampling and it has limitations in
terms of dose because it requires several LR images [25,26]. Another
approach is single image SR [27e29] using an example database
consisting of LR and HR image pairs. This method estimates the HR
image from the learned algorithm [30e34] and the example-based
SR technique has overcome the limitations of the multiple existing
SR techniques. Recent studies on SR [35e37] have achieved an
outstanding performance with regard to preserving the high-
frequency detailed information using varied deep convolutional
neural network (CNN). However, this method incurs a problem of a
vanishing gradient in a very deep CNN, and a skip connection is the
most effective approach to help with the training because it alle-
viates the vanishing gradient. Moreover, the dense skip connection
has demonstrated an improved performance by providing addi-
tional information at different layers. In particular, DenseNet [38]
has been spotlighted for its SR results [39,40] owing to a concate-
nation using a dense skip connection.

In this study, we investigated the proposed framework to
improve the SPECT image quality in terms of noise and resolution
using DenseNet. The proposed method increases the amount of
detected photons per unit area for reducing the effect on Poisson
noise and improving the resolution through the SR process. We
expected that overcoming inherent limitation such as unnatural
result (i.e., cartoon-like representation) when using the existing
noise reduction algorithm. We evaluated the image performance
based on a visual assessment, contrast-to-noise ratio (CNR) [41],
coefficient of variation (COV) [42], peak signal-to noise ratio (PSNR)
[43], and normalized noise power spectrum (NNPS) [44] of two
physical phantoms. In the following sections, we briefly describe
the implementation of the experiment and discuss the results in
detail.
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2. Materials and methods

2.1. SPECT imaging system and phantoms used

As the radiation source, 99mTc at 2.2 mCi (500 kBq) was used
along with a low-energy high-resolution (LEHR) parallel-hole
collimator. This commercial SPECT system (Discovery NM/CT 670,
GE Healthcare, USA) mainly consists of NaI(Tl) scintillation de-
tectors with approximately 9.8% energy resolution and mechanical
support for patient movement. The source-to-collimator distance
was 18.5 cm. In addition, 120 projections were obtained at 30 s per
image, and reconstructed images were restored in DICOM format
with a 14-bit depth. To acquire nuclear medicine images, Hoffman
brain and Jaszczak phantoms (spatial resolution) were used in this
study. Fig. 1 shows our experimental setup, including the detector
system and Hoffman brain phantom.
2.2. Proposed super-resolution (SR) process

Fig. 2 shows a simplified flowchart of the designed SR process
using a dense block-based deep CNN applied to a SPECT image.
Among the end-to-end deep-learning models, we employed an
extremely deep CNN to predict the residual images and used the
SRDenseNet_All architecture by Tong et al. [39]. This consists of a
convolution layer to learn the low-level features, a DenseNet block
section for learning the high-level features with a dense skip
connection, a 1� 1 convolution layer (bottleneck layer) to maintain
compactness and reduce the computation cost, two 3 � 3 decon-
volution layers with 256 feature maps for the upscaling filter, and
3 � 3 convolution layers (reconstruction layer) to generate the re-
sidual image of a single channel. Here, the DensNet block can be
expressed by Eq. (2):

pl ¼Hlð½p0;p1; p2; …; pl�1�Þ; (2)

where pl is the data at the lth layer and Hlð ,Þ is a function that has
been assembled through batch normalization [45], ReLu (activation
layer), and 3 � 3 convolution layers. Here, ½p0; p1; p2; …; pl�1� in-
dicates that the concatenation gathered all of the featuremaps until

the ðl� 1Þth layer. We designed 8 convolution layers and generated
128 feature maps in one DenseNet block. To recover the weights
and bias, the cost function used the mean squared error (MSE) as
follows:

bq¼ argmin
q

gðqÞ;

gðqÞ¼ 1
N
y� NðqjIÞ22; (3)

by¼NðbqjIÞ;
where I is the input patch, y is the label patch, q is the group of
weights and biases in the network, and Nð ,Þ is the designed
network. For optimization, the q adoptive momentum estimation
(Adam) optimizer [46] is used with an initial learning rate of 10�4

and is decreased by a factor of 10 when validation loss plateaus. A
mini-batch size of 8 was set during the training, and the number of
epochs was 150. The energy window was set to 20% and eight
random patches were generated using the image augmentation.

A total of 500 reconstructed slices were acquired with a GE
Healthcare machine as an LR (slice dimensions of 150 � 150 � 150
voxels and pixel size of 5.6 mm)eHR (slice dimensions of
300� 300 � 150 voxels and pixel size of 2.8 mm) dataset pair. Here,



Fig. 1. Photographs of (a) actual experimental single photon emission computed tomography (SPECT) imaging system and (b) Hoffman brain phantom.

Fig. 2. Simplified flowchart of the designed super-resolution algorithm using dense block based deep convolutional neural network for SPECT image.

K. Kim and Y. Lee Nuclear Engineering and Technology 53 (2021) 2341e2347
400 pairs of data are used as the training dataset and the rest of the
data are used as the test set. We generated a residual image by
subtracting between HR images and upsampled the LR images
containing information about the degradation owing to the sub-
sampling, blur, and geometric warp. The networkwas trained using a
single GPU (GTX 1080Ti,11 GB ofmemory, NVIDIA, USA) and Pytorch.
2.3. Quantitative evaluation of image quality

We evaluated the noise properties (e.g., CNR, COV, and NNPS)
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and visual quality metrics (e.g., PSNR) to confirm the ability of the
designed SR algorithm in acquiring the SPECT images. The CNR,
COV, NNPS, and PSNR were calculated as follows:

CNR¼

���ATarget � ABackground

���ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sTarget

2 þ sBackground
2

q ; (3)
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COV¼sT

ST
; (4)

NNPSðu; vÞ¼ NPSðu; vÞ
ðlarge area signalÞ2

; (5)

NPSðun; vkÞ¼ lim
NxNy;M/∞
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M,NxNy
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m¼1

����XNx
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�
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�
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�
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�
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�
�
�
expð � 2piðunxi þ vkyiÞÞj2

PSNR¼20,log 10

�
Maxfffiffiffiffiffiffiffiffiffiffi
MSE

p
�

(6)

where ATarget and sTarget represent the mean and standard devia-
tion of the target ROIs, respectively; ABackground and sBackground
represent themean and standard deviation of the background ROIs,
respectively; I is the image intensity; S is the average background
intensity; Nx;Ny and Dx;Dy account for the numbers of pixels and
pixel sizes on the X- and Y-axes, respectively; and Maxf is the
maximum signal value.
3. Results and discussion

Fig. 3 shows the experimental results of the 50th slice image
using the Hoffman brain phantom for (a) a reconstructed image
with filtered back-projection reconstruction (FBP), which is a con-
ventional reconstruction technique, (b) a reconstructed image with
Fig. 3. Experiment results of 50th slice image using the Hoffman phantom for (a) reconstru
using 5 iterations and 10 subsets, (c) residual image from deep-learning network, and (d) im
slice image with the OSEM method.
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an iterative reconstruction using OSEM under the conditions of 5
iterations and 10 subsets, (c) a residual image from the proposed
framework, and (d) a reconstructed image using the proposed
method when applying the reconstructed half-size image through
the OSEM method. The enlarged image of Fig. 3 (d) shows that the
object structure can be better identified, as compared to that of the
enlarged image in Fig. 3 (b). Fig. 4 shows another example of a
SPECT slice image using the Hoffman phantom and (a) the 65th
slice image among the FBP reconstruction data (b) that of the OSEM
reconstruction data, and (c) restored slice image using the pro-
posed method from the OSEM slice image at half projection size.
From the previous results of Fig. 3, it can be seen visually that the
proposed image in Fig. 4 (c) has less noise while the structure of the
object is distinguished, compared to that of the other two images.
Here, the expressed regions of interest (ROIs) are applied for a
quantitative evaluation using the CNR, COV, and PSNR. Fig. 5 shows
the plots of the (a) CNR and (b) COV using ROI1 and ROI2 in Fig. 4 (a),
and (c) the PSNR. The CNR values of the SR image, OSEM-based
reconstructed image, and FBP-based reconstructed image were
approximately 8.1, 7.6, and 2.7, respectively. The COV values of the
proposed SR image, OSEM-based reconstructed image, and FBP-
based reconstructed image were calculated to be approximately
1.02, 0.15, and 0.03, respectively. In addition, the PSNR factors of the
three images were observed to be approximately 13.7, 39.4, and
47.8, respectively. It was confirmed quantitatively that the pro-
posed algorithm performs quite effectively at improving the image
quality.

Fig. 6 shows (a) the 50th slice image generated through a
reconstruction using the ordered subset expectation maximization
(OSEM) method, (b) an image denoised using the non-local means
(NLM) algorithm applied to the slice image, and (c) an SR image
cted image with FBP, (b) reconstructed image with iterative reconstruction with OSEM
age reconstructed using the proposed method when applying a reconstructed half-size



Fig. 4. Examples of 65th slice image obtained using the Hoffman phantom when applying (a) the FBP reconstruction data (b) OSEM reconstruction data, and (c) the proposed
method with the OSEM slice image at half the projection size.

Fig. 5. Plots of (a) CNR, (b) COV using ROIs 1 and 2 in Fig. 4 (a), and (c) PSNR.
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achieved using the proposed framework from the OSEM-based
reconstructed slice image at half size as compared to that of the
slice image from (a). Here, the NLM algorithm showed the
2345
improved image quality in a SPECT image [47] and we compared
between applied imagewith NLM algorithm and proposedmethod.
The NLM algorithm is computed as follows:



Fig. 6. (a) SPECT image slice of Jaszczak phantom using the iterative reconstruction with OSEM, (b) denoised slice image with OSEM-based reconstructed slice, and (c) proposed SR
image using the half-sized OSEM-based reconstructed slice.
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pðsÞ¼
X
t2Us

wf ðs; tÞP
t02Us

wf ðs; t0Þ
f ðsÞ; (7)

wf ðs; tÞ¼ exp

 
� t2

2Nf s
2
f

!
;

where f is degraded image with coordinate (s, t), Us is the search
neighborhood in entire domain, Nf is the number of image, sf is the
proportional expected parameter which is depends on the patches
at the center pixels s and t. The image quality of Fig. 6 (c) shows an
improved noise property while distinguishing the macrostructure
of the holes. As the figure indicates, the proposed framework
operates well for the SR in a SPECT image. For a quantitative eval-
uation used to characterize the noise, Fig. 7 shows the 1D NNPS
calculated using the ROI1 box shown in Fig. 6 (a). Here, the 1D NNPS
of the proposed image at all spatial frequencies was improved
compared to that of the other slices.

In applying the proposed method, we considered that it is
difficult to distinguish the object if the resolution of the recon-
structed image at half size is lower than the minimum resolution
Fig. 7. The 1D NNPS calculated using ROI1 box in Fig. 6 (a). The NNPS characteristics of
the proposed image at all spatial frequencies were improved, compared to those of the
other slices.
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required for the object to be observed. However, these results
indicate that the proposed method using the SR approach after
obtaining an image with noise characteristics improved through a
physical method is extremely effective in terms of the image per-
formance of the resolution and noise when compared to that of an
image restoration method applied through a denoising technique.
Therefore, the proposed method is expected to be utilized to obtain
a better image performance with regard to the price of the equip-
ment and the exposure time of the radioisotope.

4. Conclusion

We investigated the proposed framework for improving signal
and noise performane using the SR technique in the nuclear med-
icine SPECT images. We performed the experiment to evaluate the
effectiveness of the propose method using two physical phantoms.
The proposed images showed improved quantitative values
including the CNR, COV, and PSNR metrics, compared to those of
OSEM and FBP based reconstructed images. Moreover, the 1D NNPS
of the proposed image at all spatial frequencies was improved
compared to that of the denoised image from OSEM based recon-
structed image. Consequently, it was demonstrated that the pro-
posed algorithm can achieve an excellent imaging performance by
producing a high spatial resolution and lower image noise. Thus,
the proposed image restoration framework appears to be effective
for improving image quality in SPECT as well as in conventional
nuclear medicine imaging system.
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