• Title/Summary/Keyword: computational solutions

Search Result 1,335, Processing Time 0.027 seconds

THE EXISTENCE AND MULTIPLICITY OF SOLUTIONS TO p-LAPLACE EQUATION WITH PERIODIC BOUNDARY CONDITIONS

  • Chen, Taiyong;Liu, Wenbin;Zhang, Jianjun;Zhang, Huixing
    • Journal of applied mathematics & informatics
    • /
    • v.27 no.3_4
    • /
    • pp.933-941
    • /
    • 2009
  • In this paper, we consider p-Laplace equation which models the turbulent flow in a porous medium. Using a continuation principle (cf. [R. $Man{\acute{a}}sevich$ and J. Mawhin, Periodic solutions for nonlinear systems with p-Lplacian-like operators, J. Diff. Equa. 145(1998), 367-393]), we prove the existence of solutions for p-Laplace equation subject to periodic boundary conditions, under some sign and growth conditions for f. With the help of Leray-Schauder degree theory, the multiplicity of periodic solutions for p-Laplace equation is obtained under the similar conditions above and some known results are improved.

  • PDF

TRIPLE POSITIVE SOLUTIONS OF SECOND ORDER SINGULAR NONLINEAR THREE-POINT BOUNDARY VALUE PROBLEMS

  • Sun, Yan
    • Journal of applied mathematics & informatics
    • /
    • v.28 no.3_4
    • /
    • pp.763-772
    • /
    • 2010
  • This paper deals with the existence of triple positive solutions for the nonlinear second-order three-point boundary value problem z"(t)+a(t)f(t, z(t), z'(t))=0, t $\in$ (0, 1), $z(0)={\nu}z(1)\;{\geq}\;0$, $z'(\eta)=0$, where 0 < $\nu$ < 1, 0 < $\eta$ < 1 are constants. f : [0, 1] $\times$ [0, $+{\infty}$) $\times$ R $\rightarrow$ [0, $+{\infty}$) and a : (0, 1) $\rightarrow$ [0, $+{\infty}$) are continuous. First, Green's function for the associated linear boundary value problem is constructed, and then, by means of a fixed point theorem due to Avery and Peterson, sufficient conditions are obtained that guarantee the existence of triple positive solutions to the boundary value problem. The interesting point is that the nonlinear term f is involved with the first-order derivative explicitly.

REPRODUCING KERNEL METHOD FOR SOLVING TENTH-ORDER BOUNDARY VALUE PROBLEMS

  • Geng, Fazhan;Cui, Minggen
    • Journal of applied mathematics & informatics
    • /
    • v.28 no.3_4
    • /
    • pp.813-821
    • /
    • 2010
  • In this paper, the tenth-order linear boundary value problems are solved using reproducing kernel method. The algorithm developed approximates the solutions, and their higher-order derivatives, of differential equations and it avoids the complexity provided by other numerical approaches. First a new reproducing kernel space is constructed to solve this class of tenth-order linear boundary value problems; then the approximate solutions of such problems are given in the form of series using the present method. Three examples compared with those considered by Siddiqi, Twizell and Akram [S.S. Siddiqi, E.H. Twizell, Spline solutions of linear tenth order boundary value problems, Int. J. Comput. Math. 68 (1998) 345-362; S.S.Siddiqi, G.Akram, Solutions of tenth-order boundary value problems using eleventh degree spline, Applied Mathematics and Computation 185 (1)(2007) 115-127] show that the method developed in this paper is more efficient.

Discrete optimal sizing of truss using adaptive directional differential evolution

  • Pham, Anh H.
    • Advances in Computational Design
    • /
    • v.1 no.3
    • /
    • pp.275-296
    • /
    • 2016
  • This article presents an adaptive directional differential evolution (ADDE) algorithm and its application in solving discrete sizing truss optimization problems. The algorithm is featured by a new self-adaptation approach and a simple directional strategy. In the adaptation approach, the mutation operator is adjusted in accordance with the change of population diversity, which can well balance between global exploration and local exploitation as well as locate the promising solutions. The directional strategy is based on the order relation between two difference solutions chosen for mutation and can bias the search direction for increasing the possibility of finding improved solutions. In addition, a new scaling factor is introduced as a vector of uniform random variables to maintain the diversity without crossover operation. Numerical results show that the optimal solutions of ADDE are as good as or better than those from some modern metaheuristics in the literature, while ADDE often uses fewer structural analyses.

Centroidal Voronoi Tessellation-Based Reduced-Order Modeling of Navier-Stokes Equations

  • 이형천
    • Proceedings of the Korean Society of Computational and Applied Mathematics Conference
    • /
    • 2003.09a
    • /
    • pp.1-1
    • /
    • 2003
  • In this talk, a reduced-order modeling methodology based on centroidal Voronoi tessellations (CVT's)is introduced. CVT's are special Voronoi tessellations for which the generators of the Voronoi diagram are also the centers of mass (means) of the corresponding Voronoi cells. The discrete data sets, CVT's are closely related to the h-means clustering techniques. Even with the use of good mesh generators, discretization schemes, and solution algorithms, the computational simulation of complex, turbulent, or chaotic systems still remains a formidable endeavor. For example, typical finite element codes may require many thousands of degrees of freedom for the accurate simulation of fluid flows. The situation is even worse for optimization problems for which multiple solutions of the complex state system are usually required or in feedback control problems for which real-time solutions of the complex state system are needed. There hava been many studies devoted to the development, testing, and use of reduced-order models for complex systems such as unsteady fluid flows. The types of reduced-ordered models that we study are those attempt to determine accurate approximate solutions of a complex system using very few degrees of freedom. To do so, such models have to use basis functions that are in some way intimately connected to the problem being approximated. Once a very low-dimensional reduced basis has been determined, one can employ it to solve the complex system by applying, e.g., a Galerkin method. In general, reduced bases are globally supported so that the discrete systems are dense; however, if the reduced basis is of very low dimension, one does not care about the lack of sparsity in the discrete system. A discussion of reduced-ordering modeling for complex systems such as fluid flows is given to provide a context for the application of reduced-order bases. Then, detailed descriptions of CVT-based reduced-order bases and how they can be constructed of complex systems are given. Subsequently, some concrete incompressible flow examples are used to illustrate the construction and use of CVT-based reduced-order bases. The CVT-based reduced-order modeling methodology is shown to be effective for these examples and is also shown to be inexpensive to apply compared to other reduced-order methods.

  • PDF

SERIES SOLUTIONS TO INITIAL-NEUMANN BOUNDARY VALUE PROBLEMS FOR PARABOLIC AND HYPERBOLIC EQUATIONS

  • Bougoffa, Lazhar;Al-Mazmumy, M.
    • Journal of applied mathematics & informatics
    • /
    • v.31 no.1_2
    • /
    • pp.87-97
    • /
    • 2013
  • The purpose of this paper is to employ a new useful technique to solve the initial-Neumann boundary value problems for parabolic, hyperbolic and parabolic-hyperbolic equations and obtain a solution in form of infinite series. The results obtained indicate that this approach is indeed practical and efficient.

PERIODIC SOLUTIONS FOR DUFFING TYPE p-LAPLACIAN EQUATION WITH MULTIPLE DEVIATING ARGUMENTS

  • Jiang, Ani
    • Journal of applied mathematics & informatics
    • /
    • v.31 no.1_2
    • /
    • pp.27-34
    • /
    • 2013
  • In this paper, we consider the Duffing type p-Laplacian equation with multiple deviating arguments of the form $$({\varphi}_p(x^{\prime}(t)))^{\prime}+Cx^{\prime}(t)+go(t,x(t))+\sum_{k=1}^ngk(t,x(t-{\tau}_k(t)))=e(t)$$. By using the coincidence degree theory, we establish new results on the existence and uniqueness of periodic solutions for the above equation. Moreover, an example is given to illustrate the effectiveness of our results.

EXTENDED JACOBIN ELLIPTIC FUNCTION METHOD AND ITS APPLICATIONS

  • Chen, Huaitang;Zhang, Hongqing
    • Journal of applied mathematics & informatics
    • /
    • v.10 no.1_2
    • /
    • pp.119-130
    • /
    • 2002
  • An extended Jacobin elliptic function method is presented for constructing exact travelling wave solutions of nonlinear partial differential equations(PDEs) in a unified way. The main idea of this method is to take full advantage of the elliptic equation that Jacobin elliptic functions satisfy and use its solutions to replace Jacobin elliptic functions in Jacobin elliptic function method. It is interesting that many other methods are special cases of our method. Some illustrative equations are investigated by this means.

A NOTE ON THE APPROXIMATE SOLUTIONS TO STOCHASTIC DIFFERENTIAL DELAY EQUATION

  • KIM, YOUNG-HO;PARK, CHAN-HO;BAE, MUN-JIN
    • Journal of applied mathematics & informatics
    • /
    • v.34 no.5_6
    • /
    • pp.421-434
    • /
    • 2016
  • The main aim of this paper is to discuss the difference between the Euler-Maruyama's approximate solutions and the accurate solution to stochastic differential delay equation. To make the theory more understandable, we impose the non-uniform Lipschitz condition and weakened linear growth condition. Furthermore, we give the pth moment continuous of the approximate solution for the delay equation.