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PERIODIC SOLUTIONS FOR DUFFING TYPE p-LAPLACIAN

EQUATION WITH MULTIPLE DEVIATING ARGUMENTS†

ANI JIANG

Abstract. In this paper, we consider the Duffing type p-Laplacian equa-
tion with multiple deviating arguments of the form

(φp(x
′(t)))′ + Cx′(t) + g0(t, x(t)) +

n∑
k=1

gk(t, x(t− τk(t))) = e(t).

By using the coincidence degree theory, we establish new results on the ex-
istence and uniqueness of periodic solutions for the above equation. More-
over, an example is given to illustrate the effectiveness of our results.
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1. Introduction

The dynamic behaviors of Duffing equation and Duffing type equations have
been widely investigated and are still being investigated due to their applications
in many fields such as physics, mechanics, the engineering technique fields and
so on. In recent years, the existence of periodic solutions for Duffing equation
and Duffing type equations with and without delays have been discussed by var-
ious researchers (see, for example [1,3,4,6-10] and the references given therein).
However, to the best of our knowledge, the existence and uniqueness of periodic
solutions of Duffing type p-Laplacian equation whose delays more than two have
not been sufficiently researched. Motivated by this, we shall consider the Duffing
type p-Laplacian equations with multiple deviating arguments of the form

(φp(x
′(t)))′ + Cx′(t) + g0(t, x(t)) +

n∑
k=1

gk(t, x(t− τk(t))) = e(t), (1.1)
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where p > 1 and φp : R → R is given by φp(s) = |s|p−2s for s ̸= 0 and
φp(0) = 0, C ∈ R is a constant, e, τk : R → R and g0, gk : R × R → R are
continuous functions, e and τk are T -periodic, g0 and gk are T -periodic in the
first argument, T > 0 and k = 1, 2, . . . , n. The main purpose of this paper is
to establish sufficient conditions for the existence and uniqueness of T -periodic
solutions of (1.1). The results of this paper are new and complement previously
known results. Moreover, we give an example to illustrate the results.

The organization of this paper is as follows. In Section 2, some necessary
lemmas are given. In Section 3, by using Mawhin-Manásevich continuation
theorem, some sufficient conditions for the uniqueness of periodic solutions of
Eq. (1.1) are obtained. In the last section, an example is given to show the
feasibility of the main results of this paper, and finally, some remarks are given
to illustrate the main results.

2. Preliminary Results

For convenience, let us denote

C1
T := {x ∈ C1(R) : x is T-periodic},

|x|k = (

∫ T

0

|x(t)|kdt)1/k(k > 0), |x|∞ = max
t∈[0,T ]

|x(t)|.

We also assume that τk ∈ C1
T , 1− τ ′k > 0 and k = 1, 2, . . . , n.

For the periodic boundary value problem

(φp(x
′(t)))′ = f̃(t, x, x′), x(0) = x(T ), x′(0) = x′(T ). (2.1)

where f̃ ∈ C(R3, R) is T−periodic in the first variable, we have the following
lemma:
Lemma 2.1 ([5]). Let Ω be an open bounded set in C1

T , if the following conditions
hold.

(i)For each λ ∈ (0, 1) the problem

(φp(x
′(t)))′ = λf̃(t, x, x′), x(0) = x(T ), x′(0) = x′(T )

has no solution on ∂Ω.
(ii)The equation

F (a) :=
1

T

∫ T

0

f̃(t, a, 0) dt = 0,

has no solution on ∂Ω
∩

R.
(iii)The Brouwer degree of F

deg(F, Ω
∩

R, 0) ̸= 0.

Then the periodic boundary value problem (2.1) has at least one T−periodic
solution on Ω.
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We can easily obtain the homotopic equation of Eq.(1.1) as following:

(φp(x
′
(t)))

′
+ λCx

′
(t) + λ[g0(t, x(t)) +

n∑
k=1

gk(t, x(t − τk(t)))] = λe(t), λ ∈ (0, 1). (2.2)

The following lemmas will be useful to prove our main results in Section 3.

Lemma 2.2. Assume that the following conditions are satisfied.
(A1) there exists a constant d > 0 such that

(1)
n∑

k=0

gk(t, xk)− e(t) < 0 for xk > d, t ∈ R, k = 0, 1, 2, · · · , n;

(2)
n∑

k=0

gk(t, xk)− e(t) > 0 for xk < −d, t ∈ R, k = 0, 1, 2, · · · , n.

Moveover, if x(t) is a T-periodic solution of (2.2), then

|x|∞ ≤ d+
1

2

√
T |x′|2. (2.3)

Proof. Let x(t) be a T -periodic solution of (2.2). Then, integrating (2.2) over
[0, T ], we have∫ T

0

[g0(t, x(t)) +
n∑

k=1

gk(t, x(t− τk(t)))− e(t)]dt = 0.

Using the integral mean-value theorem, it follows that there exists t1 ∈ [0, T ]
such that

g0(t1, x(t1)) +
n∑

k=1

gk(t1, x(t1 − τk(t1)))− e(t1) = 0. (2.4)

We first claim that there exists a constant t2 ∈ R such that

|x(t2)| ≤ d. (2.5)

Assume, on the contrary, that (2.5) does not hold. Then

|x(t)| > d for all t ∈ R. (2.6)

Let τ0 ≡ 0 and t1 ∈ [0, T ] be the constant prescribed in (2.4). Using (A1), (2.4)
and (2.6), we see that there exist 0 ≤ i, j ≤ n such that

x(t1 − τi(t1)) = max
0≤k≤n

x(t1 − τk(t1)) ≥ min
0≤k≤n

x(t1 − τk(t1)) = x(t1 − τj(t1)),

which, together with (2.6), implies the fact that

−d > x(t1−τi(t1)) = max
0≤k≤n

x(t1−τk(t1)) or x(t1−τj(t1)) = min
0≤k≤n

x(t1−τk(t1)) > d.

Without loss of generality, we may assume that x(t1 − τj(t1)) = min
0≤k≤n

x(t1 −

τk(t1)) > d (The situation is analogous for −d > x(t1 − τi(t1)) = max
0≤k≤n

x(t1 −

τk(t1))). Then, we have

x(t1 − τi(t1)) ≥ x(t1 − τk(t1)) ≥ x(t1 − τj(t1)) > d, k = 0, 1, 2, · · · , n. (2.7)
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According to (2.7) and (A1), we obtain

0 >

n∑
k=0

gk(t1, x(t1 − τk(t1)))− e(t1),

this contradicts the fact (2.4), thus (2.5) is true.
Let t2 = mT + t0 where t0 ∈ [0, T ] and m is an integer. Then

|x(t2)| = |x(t0)| ≤ d,

|x(t)| = |x(t0) +
∫ t

t0

x′(s)ds| ≤ d+

∫ t

t0

|x′(s)|ds, t ∈ [t0, t0 + T ],

and

|x(t)| = |x(t− T )| = |x(t0)−
∫ t0

t−T

x′(s)ds| ≤ d+

∫ t0

t−T

|x′(s)|ds, t ∈ [t0, t0 + T ].

Combining the above two inequalities and using Schwarz inequality, for any T -
periodic solution x(t) of (2.2), we have

|x|∞ = max
t∈[t0,t0+T ]

|x(t)| ≤ max
t∈[t0,t0+T ]

{d+
1

2
(

∫ t

t0

|x′(s)|ds+
∫ t0

t−T
|x′(s)|ds)} ≤ d+

1

2

√
T |x′|2.

This completes the proof of Lemma 2.2. �

Lemma 2.3. Let (A1) hold. Assume that the following condition is satisfied:
(A2) there exist nonnegative constants b0, b0, b1, b2, . . . , bn such that

b0|x1 − x2|2 ≤ −(g0(t, x1)− g0(t, x2))(x1 − x2),

and

b0 >
n∑

k=1

bk max
t∈R

(
1

1− τ ′k(t)
)

1
2 , and |gk(t, x1)− gk(t, x2)| ≤ bk|x1 − x2|,

for all t, x1, x2 ∈ R, k = 0, 1, 2, . . . , n.
Then (1.1) has at most one T-periodic solution.

Proof. Suppose that x1(t) and x2(t) are two T -periodic solutions of (1.1). Set
Z(t) = x1(t)− x2(t). Then, we obtain

(φp(x
′
1(t))− φp(x

′
2(t)))

′ + C(x′
1(t)− x′

2(t)) + [g0(t, x1(t))− g0(t, x2(t))]

+
n∑

k=1

[gk(t, x1(t− τk(t)))− gk(t, x2(t− τk(t)))] = 0. (2.8)

Multiplying Z(t) and (2.8) and then integrating it from 0 to T, from (A2)
and Schwarz inequality, we get

b0|Z|22 = b0

∫ T

0

|Z(t)|2dt

≤ −
∫ T

0

(x1(t)− x2(t))[g0(t, x1(t))− g0(t, x2(t))]dt
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= −
∫ T

0

(φp(x
′
1(t))− φp(x

′
2(t)))(x

′
1(t)− x′

2(t))dt

+
n∑

k=1

∫ T

0

[gk(t, x1(t− τk(t)))− gk(t, x2(t− τk(t)))]Z(t)dt

≤
n∑

k=1

bk

∫ T

0

|x1(t− τk(t))− x2(t− τk(t))||Z(t)|dt

≤
n∑

k=1

bk(

∫ T

0

|Z(t− τk(t))|2dt)
1
2 |Z|2

=
n∑

k=1

bk(

∫ T−τk(0)

−τk(0)

|Z(s)|2 1

1− τ ′k(t)
ds)

1
2 |Z|2

=

n∑
k=1

bk

∫ T

0

|Z(s)|2 1

1− τ ′k(t)
ds)

1
2 |Z|2

≤
n∑

k=1

bk max
t∈R

(
1

1− τ ′k(t)
)

1
2 |Z|22. (2.9)

Since b0 >
n∑

k=1

bk max
t∈R

( 1
1−τ ′

k(t)
)

1
2 , we have

Z(t) ≡ 0 for all t ∈ R.

Thus, x1(t) ≡ x2(t) for all t ∈ R. Therefore, (1.1) has at most one T -periodic
solution. The proof of Lemma 2.3 is now complete. �

3. Main results

Theorem 3.1. Let (A1) and (A2) hold. Then equation (1.1) has a unique
T -periodic solution in C1

T .

Proof. By Lemma 2.3, it is easy to see that equation (1.1) has at most one
T -periodic solution in C1

T . Thus, in order to prove Theorem 3.1, it suffices to
show that equation (1.1) has at least one T -periodic solution in C1

T . To do this,
we are going to apply Lemma 2.1. Firstly, we claim that the set of all possible
T -periodic solutions of equation (2.2) in C1

T is bounded.
Let x(t) ∈ C1

T be a T -periodic solution of equation (2.2). Multiplying x(t)
and (2.2) and then integrating it from 0 to T, we have

−
∫ T

0
φp(x

′(t))x′(t)dt+ λ

∫ T

0
x(t)[g0(t, x(t)) +

n∑
k=1

gk(t, x(t− τk(t)))− e(t)]dt = 0. (3.1)

Since x(0) = x(T ), then there exists t0 ∈ [0, T ] such that x′(t0) = 0. And since
φp(0) = 0, integrating (2.2) from 0 to T , we have

|φp(x
′(t))| = |

∫ t

t0

(φp(x
′(s)))′ ds| ≤ λ

∫ t0+T

t0

|g0(t, x(t))+
n∑

k=1

gk(t, x(t−τk(t)))−e(t)|dt, (3.2)
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where t ∈ [t0, t0 + T ].
In view of (3.1), (A2) and Schwarz inequality, we get

b0|x|22 = b0
∫ T

0
|x(t)|2dt

≤ −
∫ T

0
(x(t)− 0)(g0(t, x(t))− g0(t, 0))dt

= −
∫ T

0
1
λ
(φp(x

′(t))x′(t)dt+
n∑

k=1

∫ T

0
[gk(t, x(t− τk(t)))− gk(t, 0)]x(t)dt

+
n∑

k=0

∫ T

0
gk(t, 0)x(t)dt−

∫ T

0
x(t)e(t)dt

≤
n∑

k=1

bk
∫ T

0
|x(t− τk(t))||x(t)|dt+

n∑
k=0

∫ T

0
|gk(t, 0)||x(t)|dt

+
√
T |e|∞|x|2

≤
n∑

k=1

bk(
∫ T

0
|x(t− τk(t))|2dt)

1
2 |x|2 +

√
T

n∑
k=0

|gk(t, 0)|∞|x|2

+
√
T |e|∞|x|2

=
n∑

k=1

bk max
t∈R

( 1
1−τ ′

k
(t)

)
1
2 |x|22 +

√
T

n∑
k=0

|gk(t, 0)|∞|x|2 +
√
T |e|∞|x|2. (3.3)

It follows that

|x|2 ≤

√
T

n∑
k=0

|gk(t, 0)|∞ +
√
T |e|∞

b0 −
n∑

k=1

bk max
t∈R

( 1
1−τ ′

k(t)
)

1
2

:= θ. (3.4)

Again from (A2) and Schwarz inequality, (3.2) and (3.4) yield

|x′|p−1
∞ = max

t∈[t0, t0+T ]
{|φp(x

′(t))|} = max
t∈[t0, t0+T ]

{|
∫ t

t0

(φp(x
′(s)))′ ds|}

≤
∫ t0+T

t0

|g0(t, x(t)) +
n∑

k=1

gk(t, x(t− τk(t)))− e(t)|dt

=

∫ T

0
|g0(t, x(t)) +

n∑
k=1

gk(t, x(t− τk(t)))− e(t)|dt

≤
∫ T

0
|g0(t, x(t))− g0(t, 0)|dt+

n∑
k=1

∫ T

0
|gk(t, x(t− τk(t)))− gk(t, 0)|dt

+

n∑
k=0

∫ T

0
|gk(t, 0)|dt+ T |e|∞

≤ b0

∫ T

0
|x(t)|dt+

n∑
k=1

∫ T

0
bk|x(t− τk(t))|dt+

n∑
k=0

T |gk(t, 0)|∞ + T |e|∞

≤ b0
√
T |x|2 +

n∑
k=1

bk max
t∈R

(
1

1− τ ′k(t)
)
1
2

√
T |x|2 +

n∑
k=0

T |gk(t, 0)|∞ + T |e|∞

≤ b0
√
Tθ +

n∑
k=1

bk max
t∈R

(
1

1− τ ′k(t)
)
1
2

√
Tθ +

n∑
k=0

T |gk(t, 0)|∞ + T |e|∞

:= η,
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which, together with (2.3), implies that there exists a positive constant M >

1 + (η)
1

p−1 such that for all t ∈ R,

|x′|∞ < M, |x|∞ ≤ d+
1

2

√
T |x′|2 ≤ d+

1

2
T |x′|∞ < M.

Set

Ω = {x ∈ C1
T : |x|∞ < M, |x′|∞ < M},

then we know that equation( 2.2) has no T -periodic solution on ∂Ω as λ ∈ (0, 1)
and when x(t) ∈ ∂Ω

∩
R, x(t) = M or x(t) = −M , from (A1) , we can see that

1

T

∫ T

0

{−g0(t,M)−
n∑

k=1

gk(t,M) + e(t)} dt > 0,

1

T

∫ T

0

{−g0(t,−M)−
n∑

k=1

gk(t,−M) + e(t)} dt < 0,

so condition (ii) of Lemma 2.1 is also satisfied. Set

H(x, µ) = µx− (1− µ)
1

T

∫ T

0

[g0(t, x) +
n∑

k=1

gk(t, x)− e(t)] dt,

and when x ∈ ∂Ω
∩
R, µ ∈ [0, 1] we have

xH(x, µ) = µx2 − (1− µ)x
1

T

∫ T

0

[g0(t, x) +
n∑

k=1

gk(t, x)− e(t)] dt > 0.

Thus H(x, µ) is a homotopic transformation and

deg{F,Ω
∩

R, 0} = deg{− 1

T

∫ T

0

[g0(t, x) +

n∑
k=1

gk(t, x)− e(t)] dt,Ω
∩

R, 0}

= deg{x,Ω
∩

R, 0} ̸= 0.

so condition (iii) of Lemma 2.1 is satisfied. In view of the previous Lemma
2.1, equation (1.1) has at least one solution with period T . This completes the
proof. �

4. Example and Remark

Example 4.1. Let p = 4, g0(t, x) = −10e20+sin tx, g1(t, x) = − 1
200e

2+sin t sinx

and g2(t, x) = − 1
300e

3+cos t cosx for all t, x ∈ R. Then, the following Duffing type
p-Laplacian equation with two deviating arguments

(φpx
′(t))′+55x′(t)+g0(t, x(t))+g1(t, x(t−

1

2
sin t))+g2(t, x(t−

1

2
cos t)) = cos t (4.1)

has a unique 2π-periodic solution since all the conditions needed in Theorem
3.1 are satisfied.

Remark 4.1. Notice that the following assumptions:
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gk(t, x) are strict monotone in their second variable for any t ∈ R, k = 1, 2, · · · , n,
has been considered as fundamental for the considered existence and uniqueness
of periodic solutions of second-order differential equations with multiple delays.
We refer the reader to [1, 6, 7, 8] and the references cited therein. In view of the
fact that g1(t, x) = − 1

200e
2+sin t sinx and g2(t, x) = − 1

300e
3+cos t cosx are not

strict monotone in their second variable, so the results obtained in [3,4,6,10] and
the references cited therein can not be applicable to equation (4.1). Moreover,
the results in [1,7,8,9,11] obtained on Duffing type p-Laplacian equation without
multiple deviating arguments also can not be applicable to equation (4.1). This
implies that the results of this paper are essentially new.
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5. R. Manásevich, J. Mawhin, Periodic solutions for nonlinear systems with p-Lplacian-like
operators, J. Differential Equations 145 (1998), 367-393.
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