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THE EXISTENCE AND MULTIPLICITY OF SOLUTIONS TO
p—LAPLACE EQUATION WITH PERIODIC BOUNDARY
CONDITIONS

TAIYONG CHEN*, WENBIN LIU, JJANJUN ZHANG AND HUIXING ZHANG

ABSTRACT. In this paper, we consider p—Laplace equation which models
the turbulent flow in a porous medium. Using a continuation principle (cf.
[R. Manésevich and J. Mawhin, Periodic solutions for nonlinear systems
with p-Lplacian-like operators, J. Diff. Equa. 145(1998), 367-393]), we
prove the existence of solutions for p—Laplace equation subject to peri-
odic boundary conditions, under some sign and growth conditions for f.
With the help of Leray-Schauder degree theory, the multiplicity of periodic
solutions for p—Laplace equation is obtained under the similar conditions
above and some known results are improved.
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1. Introduction and main results

The turbulent flow in a porous medium is a fundamental mechanics problem.
To study this type problem, Leibenson [6] introduced the following model

9 ow™) d(u™) p_y
LA\ Av) 1
83:( Oz | Oz =), (L
where m > 2, % < p < 1. Generally, when m > 1, Eq.(1) is called Porous Medium
Equation [1]; when 0 < m < 1, it is called Diffusion Equation; when m = 1, it is
called Heat Equation, which often appears in non-Newtonian liquid [4]. For the
study of Eq.(1), someone reduced Eq.(1) into the following p—Laplace equation

((b;ﬂ(ul))/ = f(t7 U, ul)v (2)
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where ¢,,(s) = |s|P~?s. Obviously, when p = 2, Eq.(2) becomes a general second
order differential equation.

In recent years, some important results relative to Eq.(2) with periodic bound-
ary conditions have been obtained [2,5,7-9]. Cranas and Lee [3] have discussed
the boundary value problems for second order differential equation

u’ = f(tu,v’), te0,T)
with boundary conditions
w(0) =w(T), u'(0)='(T)

using the main assumptions as follows:
(A7) there exists a constant M > 0 such that

uf(t,u,0) >0, for|u|> M,tel0,T];
(Az) there is ¥ € C([0, +00), RT) such that
|f(t, w,v)| < ¥(v]), for (t,u,v) € [0,T]x [-M, M) x R,

where
/+oo s Iy
——ds > 2M.
0 Y(s)
In this paper, we generalize the result in [3] to p—Laplace equation
(¢p(w)) = f(t,u, '), t€[0,T], 3)
w(0) =u(T), w'(0) =u(T), (4)

and we obtain the following existence result.

Theorem 1. Let f:[0,T] x R> — R be continuous. Assume that
(H.) there exist ri, 2 with r1 < ro, such that

f(t,r1,0) <0, f(t,72,0) >0, fortel0,T];
(H3) there is ¢ € C([0, +00), RT) such that
£ w, ) < 9(lv]), for (t,u,v) € [0,T] x [r1,72] x R,

where
1

+oo §F-T
/ —ds > 1o — 1,
0 YFn
Then there exists a solution of BVP (3)(4).

It is easy to see that the condition (A;) in [3] is stronger than the condition
(H1) of Theorem 1. Hence we improve the result of [3] to some extent.

If the condition (H,) is replaced by

(H3) there exist 11 < Ry < 19 < Ra, such that
f(t,71,0) <0, f(t,R1,0) >0, f(t,r2,0)<0, f(t,R2,0)>0, fortel0,T],

then we can also get a multiplicity result.
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Theorem 2. Assume that the assumption (Hz) in Theorem 1 and (Hs) hold.
Then, there exist at least three different solutions ui,us,uz € C1[0,T] of BVP
(8)(4) satisfying:

1 <ui1(t) < Ry, 12 <wuz2(t) < Ry, Ri<wug(t)<ra, fortel0,T).

2. Existence results

Throughout the paper, we shall use the classical spaces C0, T}, C1[0,T],

L0, T] and set
CH[0,T) = {u € CY0,T] : u(0) = u(T), ' (0) = w'(T)}.
We denote the norm in C[0,T] by || - ||co- Suppose £ is an open bounded set in
C1[0,T1), i.e. there exist two positive constants M*, M** such that
Q= {u(t) € C7[0,T] : ullow < M*, /[l < M**}.
Set
QN R = {u(t) € CF[0,T]: u(t) = ug = constant, |ug| < M*}
and
INNR = {u(t) € CF[0,T] : u(t) = up = constant, |ug| = M*}.

Moreover, we will need the following lemma.

Lemma 1. [l Assume that f : [0,T] x R2 — R is continuous and such that
the following conditions hold.
(B1) The problem
(@p() = Af(t,u,u), t€[0,7],X€(0,1), (5)
u(0) = uw(T), v'(0) =/(T) (6)
has no solution on OS);
(Bz) The equation

me:%iATﬂanMt:O

has no solution on OQ N R;
(Bs) The Brower degree degp(F,YN R,0) # 0.
Then BVP (3)(4) has a solution in §).

Now we give the proof of Theorem 1.

Proof. For (t,u,v) € {0,T] x R? define
- ft,r2,v), foru > ry,
f(ta u, U) = f(t7 u, ’U), fOI‘ ™ S u S T2, (7)
flt,ri,v),  foru <ry.
The modified problem corresponding to (3)(4) is

(Pp(w)) = f(t,u, ), t€[0,T],
w(0) = u(T), '(0) ='(T).
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In order to use Lemma 1, we consider the homotopy problem
(6p(w)) = Af(t,u,u'), t€[0,T], (8)
u(0) = u(T), u'(0) ='(T), 9)

where A € (0,1).
First, we can claim that

r1 <u(t) <ry fortel0,T],Ae (0,1), (10)

where u(t) is a possible solution of BVP (8)(9). Otherwise, there exists a point
to € [0,T) such that u(tp) = minsejo,r) u(t) < 71 or u(to) = maxyep,r) ult) > ro.
Without loss of generality, assume that u(ty) = maxcpo, ) u(t) > ro.

If to € (0,T), then v'(ty) = 0 and

(8p(u'(t0))) = Af(to, u(to), u'(to)) = Af(to,2,0) > 0.
So, there exists a constant d > 0 such that (¢,(u'(t))) > 0, for ¢ € (to,t0 + 0).
This implies that ¢,(u'(t)) is increasing on (tg, tp + ). Thus
$p(t (1)) > dp(u'(t0)) = ¢p(0) =0, ¢t € (to,t0 + ),

which shows u/(t) > 0, t € (to,to + &) from the monotonicity of ¢,. Namely,
u(t) is increasing on (to, to + 6), contradicting u(to) = max,cpo, 1) u(t).

If to = 0, by u(0) = u(T),v(0) = «'(T), then v'(0) = 0. Immediately, a
contradiction is obtained by a similar argument.

Second, we shall prove that there exists My > 0 such that [|u'||cc < Mo.

For fixed to € [0,T], if u'(to) # O, then there exists an interval [u,v] C
[0,T], to € [p,v] such that u'(t) has the same sign for t € [u,v] and either
u/(u) = 0 or v/(v) = 0. Here, we might as well assume that u/(t) > 0, for t €
(i, v] and «'(p) = 0. Multiplying (8) with «'(t), we have

() (dp(u)) = X' () (s, u, ).
Noting that 71 < u(t) < re, for t € [0,T] and the definition of f, then

u'(£)(dp()) = A’ (£) f(s, u, ).
Combining with condition (Hz) and r; < u(t) < rq, for ¢ € [0, 1], we get
w'(t)(¢p(u)) < u'(O)9(u'(t)), fort € [u,v].
Namely
(B () 7= (8w (1))
(' (1))
Integrating (11) over [y, to], we get

“ (6p (W () 7T ($p (W (1)) ©
L S0 dt < L (t)dt.

<d'(t), forte [u,v] (11)
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Let s = ¢,(u/(t)), we have

‘bp (tO) sp_il

—ds < ulto) —u(p) < rg —ry.
0 P(s»-T)

By hypothesis (H3), we can find some constant M; (independent of A and to)
such that ¢, (u’(to)) < M;. Hence, there exists My (independent of ) such that

14/l < Mo.

Next, we shall prove that the BVP (8)(9) has at least one solution by using
Lemma 1. Set

Q={u(t) € CL[0,T]: 71 < u(t) < ra,t €10, T]; |0 < Mo +1}.

Obviously, the hypothesis (B;) of Lemma 1 is satisfied. By assumption (H1),
we know that

F(t,71,0) <0, f(t,72,0) > 0.
Applying the monotonicity of ¢,, we immediately get
F(r) <0, F(re)>0.
Thus

1 (T
F(a):T/O f(t,a,0)dt #0, forae€ dQNR.

Therefore, the hypothesis (Bz) of lemma 1 is true. Noting that F(ry)F(ry) <0
and the property of Brouwer degree, we see that
degp(F, QN R,0) = 1.

Hence, the hypothesis (B3) of Lemma 1 is also satisfied. By Lemma 1, it can
be shown that the BVP (8)(9) has one solution u(t) and satisfying r1 < u(t) <
2, for t € {0, T]. From (7), we get that u(t) is a solution of BVP (3)(4). O

3. Multiplicity results

In order to prove the multiplicity result, we shall use the following lemmas.
For more details we refer the readers to [7].

Lemma 2. U For fized I(t) € C[0,T), let us define

_ /01 67 (a+ L(t))dt

Then the function Gi(a) : R — R has the following properties:

(1) for any fized I(t) € C[0,T], the equation Gi(a) =0 has a unique solution
a(l);

(2) the function @ : C[0,T] — R is continuous and sends bounded sets into
bounded sets.
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Let now a : L' — R be defined by

a(h) = a(H(h)), H(h)= /0 h(s)ds.

Then, it is clear that a is a continuous function which sends bounded sets of L'
into bounded sets of R, and hence it is a completely continuous mapping.
Let us define the projectors P, Q respectively by

1 T
PiCh— ChP@=u0), QL' —L'QW)=7 [ h(s)is,
0

and the operator J : L — C% given by

J(h)(t) = H{¢, [a((I = Q)h) + H((I - Q)h)]}(t), fort € [0,T].
Obviously, the operator J is continuous and sends equi-integrable sets in L! into
relatively compact sets in Ck.

Next, let us consider the auxiliary problem (5)(6) corresponding to (3)(4).
Then BVP (5)(6) is equivalent to the problem u = G¢(u, A), A € (0,1), where
Gr(u,A) := Pu+ QNy(u) + (J o [MI = Q)Ns])(w),

Ny(u) = f(t,u,u’).

Lemma 3. "l Assume that f : [0,T] x R? — R is continuous and Q is an
open bounded set in C1[0,T) such that the following conditions hold.
(C1) For each X € (0,1], the problem

(dp(u)) = Af(t,u, ), uw(0)=u(T), v (0)=1u'(T)

has no solution on 9);

(C2) The equation F(a):= % /OT f(t,a,0)dt = 0 has no solution on 02N R.
Then

degrs[I — Gf(-,1),9Q,0] = —degp[F, QN R, 0].

Now we prove Theorem 2.
Proof.) For (t,u,v) € [0,T] x R2, let us define three auxiliary operator f;(i =
1,2,3) by

f(t,Rs,v), foru> R,
filt,u,v) =< f(t,u,v), for r; <u < Ry, (12)
ft,ri,v),  foru<ry,

where i = 1,2 and
f(t, Ra,v), for u> Ry,
f3(t,u,’l)) =

f(t, u,v), for r1 <u < Ry, (13)
ft,ry,v), foru<r.
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In order to use Lemma 3, we consider the homotopy problem corresponding
to (3)(4)

(dp(u)) = Afi(t,u, o), t€][0,T], (14)

u(0) =w(T), v'(0)=u'(T), (15)

where A € (0,1],% = 1,2,3. For fixed i, we assume #;(t) is a possible solution
of BVP (14)(15). When ¢ = 1,2, a similar argument in Theorem 1 shows that
there exist two constants K; (independent of X ) such that

T <’L_l,¢(t) < R;, a;(t)| < K;, forte [O,T]

When i = 3, we can also obtain that there exists K3 (independent of A ) such
that

r1 < u3(t) < Rg, |uj(t)] < K3, forte[0,T).
Let K = max;=123{K;}. Fori=1,2, set
Q; = {u(t) € C1[0,T): m; <u(t) < Ry, W/ (1) < K, t €[0,T]}.
And for 7 = 3, set
Q3 = {u(t) € CF0,T] : r1 < ult) < Ry, |W'(t)| < K, t€[0,T]}.

Obviously, for each 4, the hypothesis (C;) and (C3) of Lemma 3 are satisfied.
Thus, by Lemma 3, we can get

deg; o[l — Gy, (+,1),€;,0] = —degpg[F;, 2 N R, 0],

where F;(a) / fi(t,a,0)dt = 0. A similar argument in Theorem 1 shows
that degpg [FZ, Q;NR,0] = 1. Hence
degrsll — G (1), i, 0] = —1,
where ¢ = 1,2, 3. Noting the definition of f;, we know that for each 4
filt,u, ') = f(t,u,u’) foru e Q.

Thus

deg; o[l — G¢(-,1),0;,0] = -1, i=1,2,3,
and

degrgll — Gy(-, 1), 23\ N Q2, 0]

= degps[l — Gf(-, 1), Q3,0] — degpg[] — Gf(-, 1), , 0]
—deg; o[ — Gy(-,1),82,0] = 1.

Consequently, the operator G (-, 1) has at least three fixed points in Q;(i = 1,2)

and Q3\Q; NQy which are three different solutions wuy,ua, us of BVP (3)(4)
satisfying:

r1 < ’Uq(t) < Ri, rm< Ug(t) < R, R < ’U,3(t) <719, forte [O,T]
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4. Discussion

In Theorem 1, we provide a natural and easily verifiable condition under
which Eq.(1) has a periodic solution. This result improves the work of [3] to
some extent.

On the other hand, we present some sufficient conditions to guarantee the
existence of multiple periodic solutions for p—Laplace equation in Theorem 2.
As far as we know, the similar results are very few.

In Theorem 1 and Theorem 2, the assumption (Hz) plays an important role
which is always called Nagumo condition. When f is a polynomial, the condition
(Hz3) requires that the order of f is less than p. It is interesting that whether
Eq.(1) still has periodic solutions if the order of f is greater than p. We leave
this for future work.
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