• Title/Summary/Keyword: computational mathematics

Search Result 3,169, Processing Time 0.028 seconds

Interaction Metaphors for Modeling Virtual Hair using Haptic Interfaces

  • Bonanni, Ugo;Kmoch, Petr;Magnenat-Thalmann, Nadia
    • International Journal of CAD/CAM
    • /
    • v.9 no.1
    • /
    • pp.93-102
    • /
    • 2010
  • Shaping realistic hairstyles for digital characters is a difficult, long and tedious task. The lack of appropriate interaction metaphors enabling efficient and simple, yet accurate hair modeling further aggravates the situation. This paper presents 3D interaction metaphors for modeling virtual hair using haptic interfaces. We discuss user tasks, ergonomic aspects, as well as haptics-based styling and fine-tuning tools on an experimental prototype. In order to achieve faster haptic rates with respect to the hair simulation and obtain a transparent rendering, we adapt our simulation models to comply with the specific requirements of haptic hairstyling actions and decouple the simulation of the hair strand dynamics from the haptic rendering while relying on the same physiochemical hair constants. Besides the direct use of the discussed interaction metaphors in the 3D modeling area, the presented results have further application potential in hair modeling facilities for the entertainment industry and the cosmetic sciences.

Influence Analysis of the Common Mean Problem

  • Kim, Myung Geun
    • Communications for Statistical Applications and Methods
    • /
    • v.20 no.3
    • /
    • pp.217-223
    • /
    • 2013
  • Two influence diagnostic methods for the common mean model are proposed. First, an investigation of the influence of observations according to minor perturbations of the common mean model is made by adapting the local influence method which is based on the likelihood displacement. It is well known that the maximum likelihood estimates are in general sensitive to influential observations. Case-deletions can be a candidate for detecting influential observations. However, the maximum likelihood estimators are iteratively computed and therefore case-deletions involve an enormous amount of computations. An approximation by Newton's method to the maximum likelihood estimator obtained after a single observation was deleted can reduce much of computational burden, which will be treated in this work. A numerical example is given for illustration and it shows that the proposed diagnostic methods can be useful tools.

Performance Optimization of Parallel Algorithms

  • Hudik, Martin;Hodon, Michal
    • Journal of Communications and Networks
    • /
    • v.16 no.4
    • /
    • pp.436-446
    • /
    • 2014
  • The high intensity of research and modeling in fields of mathematics, physics, biology and chemistry requires new computing resources. For the big computational complexity of such tasks computing time is large and costly. The most efficient way to increase efficiency is to adopt parallel principles. Purpose of this paper is to present the issue of parallel computing with emphasis on the analysis of parallel systems, the impact of communication delays on their efficiency and on overall execution time. Paper focuses is on finite algorithms for solving systems of linear equations, namely the matrix manipulation (Gauss elimination method, GEM). Algorithms are designed for architectures with shared memory (open multiprocessing, openMP), distributed-memory (message passing interface, MPI) and for their combination (MPI + openMP). The properties of the algorithms were analytically determined and they were experimentally verified. The conclusions are drawn for theory and practice.

On a new fourth order self-adaptive time integration algorithm

  • Zhong, Wanxie;Zhu, Jianping
    • Structural Engineering and Mechanics
    • /
    • v.4 no.6
    • /
    • pp.589-600
    • /
    • 1996
  • An explicit 4th order time integration scheme for solving the convection-diffusion equation is discussed in this paper. A system of ordinary differential equations are derived first by discretizing the spatial derivatives of the relevant PDE using the finite difference method. The integration of the ODEs is then carried out using a 4th order scheme and a self-adaptive technique based on the spatial grid spacing. For a non-uniform spatial grid, different time step sizes are used for the integration of the ODEs defined at different spatial points, which improves the computational efficiency significantly. A numerical example is also discussed in the paper to demonstrate the implementation and effectiveness of the method.

Effect of suction on volume change and shear behaviour of an overconsolidated unsaturated silty soil

  • Estabragh, A.R.;Javadi, A.A.
    • Geomechanics and Engineering
    • /
    • v.4 no.1
    • /
    • pp.55-65
    • /
    • 2012
  • This paper presents the results of an experimental study on the effect of suction on compressibility and shear behaviour of unsaturated silty soil under various types of loading. A series of laboratory experiments were conducted in a double-walled triaxial cell on samples of a compacted silty soil. In the experiments the soil samples were subjected to isotropic consolidation followed by unloading and subsequent reloading under constant suction and prescribed overconsolidated ratio. The experimental results are presented in the context of an elasto-plastic model for unsaturated soil. The effects of suction on mechanical behaviour of unsaturated silty soil are presented and discussed. It is shown that increasing suction affects the shear behaviour of unsaturated soils, but there is a limit beyond which, further increase in suction will not result in any significant change in the behaviour.

Oscillation Criteria for Certain Nonlinear Differential Equations with Damping

  • Zheng, Zhaowen;Zhu, Siming
    • Kyungpook Mathematical Journal
    • /
    • v.46 no.2
    • /
    • pp.219-229
    • /
    • 2006
  • Using the integral average method, we establish some oscillation criteria for the nonlinear differential equation with damped term $$a(t)|{x}^{\prime}(t)|^{\sigma-1}{x}^{\prime}(t)^{\prime}+p(t)|{x}^{\prime}(t)|^{\sigma-1}{x}^{\prime}(t)+q(t)f(x(t))=0,\;{\sigma}>1$$, where the functions $a,\;p$ and $q$ are real-valued continuous functions defined on $[t_o,{\infty})$ with $a(t)>0,\;f(x){\in}C^1(\mathbb{R})$ and $\frac{f^{\prime}(u)}{|f^{({\sigma}-1)/{\sigma}}(u)|}{\geq}k>0$ for $u{\neq}0$.

  • PDF

Spline Surface Approximation for Computing Pit Excavation Volume with the Free Boundary Conditions

  • Yoo, Jae-Chil;Lee, Seung-Hoon;Mun, Du-Yeoul
    • Korean Journal of Geomatics
    • /
    • v.2 no.1
    • /
    • pp.25-29
    • /
    • 2002
  • The calculation of earthwork plays a major role in plan or design of many civil engineering projects, and thus it has become very important to improve the accuracy of earthwork calculation. In this paper, we propose an algorithm for finding a cubic spline surface with the free boundary conditions, which interpolates the given three dimensional data, by using B-spline and an accurate method to estimate pit-excavation volume. The proposed method should be of interest to surveyors especially concerned with accuracy of volume computations. We present some computational results showing that our proposed method provides good accuracy.

  • PDF

Vehicle Image Recognition Using Deep Convolution Neural Network and Compressed Dictionary Learning

  • Zhou, Yanyan
    • Journal of Information Processing Systems
    • /
    • v.17 no.2
    • /
    • pp.411-425
    • /
    • 2021
  • In this paper, a vehicle recognition algorithm based on deep convolutional neural network and compression dictionary is proposed. Firstly, the network structure of fine vehicle recognition based on convolutional neural network is introduced. Then, a vehicle recognition system based on multi-scale pyramid convolutional neural network is constructed. The contribution of different networks to the recognition results is adjusted by the adaptive fusion method that adjusts the network according to the recognition accuracy of a single network. The proportion of output in the network output of the entire multiscale network. Then, the compressed dictionary learning and the data dimension reduction are carried out using the effective block structure method combined with very sparse random projection matrix, which solves the computational complexity caused by high-dimensional features and shortens the dictionary learning time. Finally, the sparse representation classification method is used to realize vehicle type recognition. The experimental results show that the detection effect of the proposed algorithm is stable in sunny, cloudy and rainy weather, and it has strong adaptability to typical application scenarios such as occlusion and blurring, with an average recognition rate of more than 95%.

A DEVANEY-CHAOTIC MAP WITH POSITIVE ENTROPY ON A SYMBOLIC SPACE

  • Ramesh, Shankar Bangalore;Vasu, Chetana Urva
    • Communications of the Korean Mathematical Society
    • /
    • v.34 no.3
    • /
    • pp.967-979
    • /
    • 2019
  • Chaotic dynamical systems, preferably on a Cantor-like space with some arithmetic operations are considered as good pseudo-random number generators. There are many definitions of chaos, of which Devaney-chaos and pos itive topological entropy seem to be the strongest. Let $A=\{0,1,{\dots},p-1\}$. We define a continuous map on $A^{\mathbb{Z}}$ using addition with a carry, in combination with the shift map. We show that this map gives rise to a dynamical system with positive entropy, which is also Devaney-chaotic: i.e., it is transitive, sensitive and has a dense set of periodic points.

IMPROVED LOCAL CONVERGENCE ANALYSIS FOR A THREE POINT METHOD OF CONVERGENCE ORDER 1.839

  • Argyros, Ioannis K.;Cho, Yeol Je;George, Santhosh
    • Bulletin of the Korean Mathematical Society
    • /
    • v.56 no.3
    • /
    • pp.621-629
    • /
    • 2019
  • In this paper, we present a local convergence analysis of a three point method with convergence order $1.839{\ldots}$ for approximating a locally unique solution of a nonlinear operator equation in setting of Banach spaces. Using weaker hypotheses than in earlier studies, we obtain: larger radius of convergence and more precise error estimates on the distances involved. Finally, numerical examples are used to show the advantages of the main results over earlier results.