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Abstract
Two influence diagnostic methods for the common mean model are proposed. First, an investigation of the

influence of observations according to minor perturbations of the common mean model is made by adapting
the local influence method which is based on the likelihood displacement. It is well known that the maximum
likelihood estimates are in general sensitive to influential observations. Case-deletions can be a candidate for
detecting influential observations. However, the maximum likelihood estimators are iteratively computed and
therefore case-deletions involve an enormous amount of computations. An approximation by Newton’s method
to the maximum likelihood estimator obtained after a single observation was deleted can reduce much of com-
putational burden, which will be treated in this work. A numerical example is given for illustration and it shows
that the proposed diagnostic methods can be useful tools.
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1. Introduction

The common mean problem has a long history of research since the pioneering work by Graybill and
Deal (1959). It has real-life applications in wide areas, for example in clinical trials (Kelleher, 1996),
in soil engineering (Zacks, 1966, 1970), in a balanced incomplete block design (Montgomery, 1997;
Pal et al., 2007), and in meta analysis (Chang and Pal, 2008). Some detailed references about point
estimation of the common mean can be found in Kubokawa (1991) and Ma et al. (2011). Recently
Pal et al. (2007) studied the maximum likelihood estimation of the parameters of the common mean
model. For estimating the common mean with unknown variances, they showed that the maximum
likelihood estimator has better overall performance than the Graybill-Deal estimator.

In this work, an investigation of the influence of observations according to minor perturbations of
the common mean model is considered. In Section 2, it is performed by adapting the local influence
method introduced by Cook (1986) which is based on the likelihood displacement. It is well known
that the maximum likelihood estimates are in general sensitive to influential observations. Thus we
need some diagnostic methods of detecting observations that have large influence on the estimates. To
this end case-deletions can be a candidate. As will be seen later, the maximum likelihood estimators
are iteratively computed and therefore case-deletions involve an enormous amount of computations.
An approximation by Newton’s method to the maximum likelihood estimator obtained after a single
observation was deleted can reduce much of computational burden, which will be treated in Section
3. A numerical example is given for illustration in Section 4.
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2. Local Influence

2.1. Maximum likelihood estimation

We consider the common mean model characterized by two normal distributions with common mean,
N(µ, σ2

1) and N(µ, σ2
2). A random sample {xi1, . . . , xini } is drawn from N(µ, σ2

i ) for each i = 1, 2 and
both samples are assumed to be independent. The joint log-likelihood function of µ, σ2

1, σ2
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both samples can be written as
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Let µ̂, σ̂2
1, σ̂2

2 be the maximum likelihood estimators(MLEs) of µ, σ2
1, σ2

2, respectively and then they
are found by iteratively solving the following likelihood equations
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Exchanging the role of the subscripts, we can have an equivalent form for σ̂2
2. More details about the

maximum likelihood estimation can be found in Pal et al. (2007).
For later use, let L̈ = ∂2L(µ, σ2

1, σ
2
2)/∂θ∂θT evaluated at θ = θ̂, where θ = (µ, σ2
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2)T . Then L̈ is

a 3 × 3 matrix whose components are computed as
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where all of the above partial derivatives are evaluated at θ = θ̂.
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2.2. Perturbed model

Let n = n1 + n2. A perturbation vector w = (w1, . . . ,wn)T in the n-dimensional Euclidean space
characterizes the perturbed model, and it can be expressed as w = 1n +αd, where 1n is an n× 1 vector
whose elements are all equal to one, the vector d of unit length represents the direction towards which
the perturbation w moves, and the scalar α denotes the magnitude of the perturbation w along the
direction d. We consider a perturbed model in which

x1 j ∼ N
µ, σ2

1

w j

 , ( j = 1, . . . , n1),

x2k ∼ N
µ, σ2

2
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 , (k = 1, . . . , n2).

Under this perturbation scheme, the perturbed joint log-likelihood function of µ, σ2
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2 based on both
samples becomes
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Let µ̂(w), σ̂2
1(w), σ̂2

2(w) be the MLEs of µ, σ2
1, σ2

2 under the above perturbed model, respectively, and
then it is easily seen that they are also iteratively computed by the following equations
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Since σ̂2
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j=1(xi j − µ̂)2 in the unperturbed model, the form of the σ̂2
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the perturbed model can easily be guessed just as given in the above.
Let ∆ = ∂2L(µ, σ2
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2 |w)/∂θ∂wT evaluated at θ = θ̂ and w = 1n. A closed form of ∆ is not

available but its components are easily computed as
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where all of the above derivatives are evaluated at θ = θ̂ and w = 1n.

2.3. Local influence procedure
In this subsection, we will briefly describe the local influence introduced by Cook (1986) which can be
adapted to the common mean model with computational results obtained in the previous subsections.
Let F̈ = ∆T L̈−1∆. Then we can compute F̈, numerically. In the case of the common mean model, the
likelihood displacement can be defined by
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The surface of interest is formed by the vector (w, LD(w)) as w varies over a certain space. The
eigenvector lmax corresponding to the largest absolute eigenvalue of 2F̈ provides information about
influential observations. Observations associated with relatively large absolute component of lmax

would be influential. The largest absolute eigenvalue of 2F̈ is the maximum curvature of the curve
which is the portion of the surface cut out by the plane spanned by the vectors 1(n+1) and (lmax, 0),
where 1(n+1) is the (n + 1) × 1 vector with its (n + 1)st element equal to one and the others being zero.
Refer to O’Neill (2006) for more details about differential geometry.

3. Case Deletion Diagnostics

In what follows, a quantity with a subscript (−r) implies that the quantity has been obtained after
the rth observation was deleted. Let L(−r) = L(−r)(µ, σ2

1, σ
2
2) be the joint log-likelihood based on the

reduced sample with the rth observation of the first sample deleted. Similarly, the case of deleting
the rth observation of the second sample can be treated, which is therefore not reported here. Let
L̇(−r) = ∂L(−r)/∂θ evaluated at θ = θ̂ and L̈(−r) = ∂

2L(−r)/∂θ∂θ
T evaluated at θ = θ̂.

The influence of deleting the rth observation on the MLE θ̂ can be investigated by the quantity
θ̂ − θ̂(−r). If θ̂(−r) resides far away from θ̂, then the rth observation is regarded as influential one. As in
θ̂, an explicit form of θ̂(−r) is not available and for each r we should take steps of iteratively estimating
the parameters, which incurrs a heavy computational burden. To avoid this computational difficulty,
we can use an approximation to θ̂(−r) which can be obtained by the Newton’s method as

θ̂(−r) = θ̂ − L̈−1
(−r)L̇(−r).

For more details about the Newton’s method, refer to Chap. 5 of Cook and Weisberg (1982) or
Chap. 10 of Kennedy and Gentle (1980). An approximation to θ̂(−r) given in the above depends on
θ̂ for all r. Hence there is no need to do an estimation process again and this approximation reduces
computational burden. An application of Newton method to case deletion diagnostics in other fields
of statistics, for example in nonlinear structural equation model can be found in Lee and Lu (2003).

Based on the reduced sample with the rth observation deleted from the ith sample, the sample mean
and the sample variance are
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The joint log-likelihood function of µ, σ2
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For computing L̇(−r) , we need the following computational results:
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∂2L(−r)

∂µ2 = −n1 − 1
σ̂2

1

− n2

σ̂2
2

,

∂2L(−r)

∂µ∂
(
σ2

1

) = −n1 − 1
σ̂4

1

(
x̄1(−r) − µ̂

)
,

∂2L(−r)

∂µ∂
(
σ2

2

) = − n2

σ̂4
2

(x̄2 − µ̂),

∂2L(−r)

∂
(
σ2

1

)2 = −
n1 − 1

2

− 1
σ̂4

1

+
2s2

1(−r)

σ̂6
1

+
2
(
x̄1(−r) − µ̂

)2

σ̂6
1

 ,
∂2L(−r)

∂
(
σ2

2

)2 = −
n2

2

− 1
σ̂4

2

+
2s2

2

σ̂6
2

+
2 (x̄2 − µ̂)2

σ̂6
2

 = − n2

2σ̂4
2

,

∂2L(−r)

∂
(
σ2

1

)
∂
(
σ2

2

) = 0.

Note that all of the above partial derivatives are evaluated at θ = θ̂.

4. A Numerical Example

In this section we will illustrate the local influence method and an approximation to case-deletions
with a data set taken from Problem 14.10 of Neter et al. (1990) in which data on productivity im-
provements for three levels of firms were collected. Here we will investigate the first two levels: Low
level for the first group and Moderate level for the second group. The observations for the first group
are labeled as 1 to 9 in order and those for the second group as 10 to 21.
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Figure 1: Influence analysis

The maximum likelihood estimates based on the full sample are µ̂ = 7.84, σ̂2
1 = 1.52 and σ̂2

2 =

0.61. The largest absolute eigenvalue of 2F̈ is 2.46. An index plot of lmax is included in Figure 1(a). It
shows that observations 10, 20, 12 are potentially influential and observation 4 is a little bit influential.

Single case deletions are performed. Index plots for the values µ̂− µ̂(−r), σ̂2
1− σ̂2

1(−r), σ̂
2
2− σ̂2

2(−r) are
displayed in Figures 1(b) to (d), respectively. We can see that observation 10 has the largest influence
on all of the estimates µ̂ , σ̂2

1, σ̂2
2. Observation 4 also influences the estimation of σ2

1. We can see
that the role of observation 10 in estimating σ2

1 is opposite to that of observation 4 because deletion of
observation 10 increases the estimate σ̂2

1 while deletion of observation 4 decreases it. The influence
of observation 12 is remarkable in estimating σ2

2 compared with the other parameters. Observations
10 and 12 have a similar role in estimating σ2

2 in that deleting each of them reduces the estimate σ̂2
2.

Observation 20 has a little influence on µ̂. This example shows that case deletions yield some useful
information about the behavior of observations in estimating the parameters.
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