Oscillation Criteria for Certain Nonlinear Differential Equations with Damping

  • Zheng, Zhaowen (Department of Mathematical Science, Qufu Normal University) ;
  • Zhu, Siming (Department of Mathematical and computational science, Sun Yat-Sen University)
  • Received : 2004.10.28
  • Published : 2006.06.23

Abstract

Using the integral average method, we establish some oscillation criteria for the nonlinear differential equation with damped term $$a(t)|{x}^{\prime}(t)|^{\sigma-1}{x}^{\prime}(t)^{\prime}+p(t)|{x}^{\prime}(t)|^{\sigma-1}{x}^{\prime}(t)+q(t)f(x(t))=0,\;{\sigma}>1$$, where the functions $a,\;p$ and $q$ are real-valued continuous functions defined on $[t_o,{\infty})$ with $a(t)>0,\;f(x){\in}C^1(\mathbb{R})$ and $\frac{f^{\prime}(u)}{|f^{({\sigma}-1)/{\sigma}}(u)|}{\geq}k>0$ for $u{\neq}0$.

Keywords

References

  1. J. V. Manojlovic, Oscillation criteria for second-order half-linear differential equations, Math. Comput. Modelling, 30(1999), 109-119. https://doi.org/10.1016/S0895-7177(99)00151-X
  2. A. Elbert, A half-linear second order differential equation, Colloq. Math. Soc. Janos Bolyai: Qualitative Theory of Differential Equations, Szeged, (1979), 153-180.
  3. H. J. Li and C. C. Yeh, Sturm comparison theorem for half-linear second order differential equations, Proc. Roy. Edinburgh, 125A(1995), 1193-1240.
  4. H. L. Hong, W. C. Lian and C. C. Yeh, The oscillation of half-linear differential equations with an oscillatory coefficient, Math. Comput. Modelling, 24(1996), 77-86. https://doi.org/10.1016/0895-7177(96)00129-X
  5. J. S. W. Wong, On Kamenev-type oscillation theorems for second-order differential equations with damping, J. Math. Anal. Appl., 258(2001) 244-257. https://doi.org/10.1006/jmaa.2000.7376
  6. J. S. W. Wong, Oscillation criteria for second-order nonlinear differential equations involving general means, J. Math. Anal. Appl., 247(2000), 489-505. https://doi.org/10.1006/jmaa.2000.6855
  7. R. P. Agrawal and S. R. Grace, On the oscillation of certain second order differential equations, Georgian Math. J., 7(2002), 201-213.
  8. I. V. Kamenev, Integral criterion for oscillation of linear differential equations of second order, Mat. Zametki, 23(1978), 249-251.
  9. J. Yan, Oscillation theorems of second order linear differential equations with damping, Proc. Amer. Math. Soc., 98(1986), 276-282. https://doi.org/10.1090/S0002-9939-1986-0854033-4
  10. B. S. Chen, Oscillation criteria for nonlinear second-order damped differential equations, Acta Math. Appl. Sinica, 15(1992), 166-173.
  11. P. J. Y. Wong and R. P. Agarwal, Oscillatory behavior of solutions of certain second order nonlinear differential equations, J. Math. Anal. Appl., 198(1996), 337-354. https://doi.org/10.1006/jmaa.1996.0086
  12. Ch. G. Philos, Oscillation theorems for linear differential equations of second order, Arch. Math. (Basel), 53(1989), 482-492. https://doi.org/10.1007/BF01324723
  13. A. Tiryaki, D. Cakmak and B. Ayanlar, On the oscillation of certain second order nonlinear differential eqautions, J. MAth. Anal. Appl., 281(2003), 565-574. https://doi.org/10.1016/S0022-247X(03)00145-8
  14. G. H. Hardy, J. E. Littlewood and G. Polya, Inequalities, 2nd Edition, Cambridge University Press, Cambridge, 1988.