Browse > Article
http://dx.doi.org/10.5351/CSAM.2013.20.3.217

Influence Analysis of the Common Mean Problem  

Kim, Myung Geun (Department of Mathematics Education, Seowon University)
Publication Information
Communications for Statistical Applications and Methods / v.20, no.3, 2013 , pp. 217-223 More about this Journal
Abstract
Two influence diagnostic methods for the common mean model are proposed. First, an investigation of the influence of observations according to minor perturbations of the common mean model is made by adapting the local influence method which is based on the likelihood displacement. It is well known that the maximum likelihood estimates are in general sensitive to influential observations. Case-deletions can be a candidate for detecting influential observations. However, the maximum likelihood estimators are iteratively computed and therefore case-deletions involve an enormous amount of computations. An approximation by Newton's method to the maximum likelihood estimator obtained after a single observation was deleted can reduce much of computational burden, which will be treated in this work. A numerical example is given for illustration and it shows that the proposed diagnostic methods can be useful tools.
Keywords
Case deletions; common mean; local influence; Newton method;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Chang, C. H. and Pal, N. (2008). Testing on the common mean of several normal distributions, Computational Statistics and Data Analysis, 53, 321-333.   DOI   ScienceOn
2 Cook, R. D. (1986). Assessment of local influence (with discussions), Journal of the Royal Statistical Society (B), 48, 133-169.
3 Cook, R. D. and Weisberg, S. (1982). Residuals and Influence in Regression, Chapman and Hall, New York.
4 Graybill, F. A. and Deal, R. B. (1959). Combining unbiased estimators, Biometrics, 15, 543-550.   DOI   ScienceOn
5 Kelleher, T. (1996). A Bayes method for estimating the common mean of two normal populations, Communications in Statistics: Theory and Methods, 25, 2141-2157.   DOI   ScienceOn
6 Kennedy, W. and Gentle, J. (1980). Statistical Computing, Dekker, New York.
7 Kubokawa, T. (1991). Estimation of the common mean and its applications, Sugaku Expositions, 4, 97-110 (Published by American Mathematical Society).
8 Lee, S. Y. and Lu, B. (2003). Case-Deletion diagnostics for nonlinear structural equation models, Multivariate Behavioral Research, 38, 375-400.   DOI   ScienceOn
9 Montgomery, D. C. (1997). Design and Analysis of Experiments, 4th ed., John Wiley & Sons, New York.
10 Ma, T., Ye, R. and Jia, L. (2011). Finite-sample properties of the Graybill-Deal estimator, Journal of Statistical Planning and Inference, 141, 3675-3680.   DOI   ScienceOn
11 Neter, J., Wasserman, W. and Kutner, M. (1990). Applied Linear Statistical Models, 3rd ed., Irwin.
12 O'Neill, Barrett (2006). Elementary Differential Geometry, 2nd ed., Academic Press.
13 Pal, N., Lin, J.-J., Chang, C.-H. and Kumar, S. (2007). A revisit to the common mean problem: Comparing the maximum likelihood estimator with the Graybill-deal estimator, Computational Statistics and Data Analysis, 51, 5673-5681.   DOI   ScienceOn
14 Zacks, S. (1970). Bayes and fiducial equivariant estimators of the common mean of two normal distributions, Annals of Mathematical Statistics, 41, 59-69.   DOI   ScienceOn
15 Zacks, S. (1966). Unbiased estimation of the common mean of two normal distributions based on small samples of equal size, Journal of the American Statistical Association, 61, 467-476.   DOI   ScienceOn