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Spline Surface Approximation for Computing Pit Excavation Volume
with the Free Boundary Conditions

Jaechil Yoo*, Seung-Hoon LEE** and Du-Yeoul MUN***

Abstract

The calculation of earthwork plays a major role in plan or design of many civil engineering projects, and
thus it has become very important to improve the accuracy of earthwork calculation. In this paper, we propose
an algorithm for finding a cubic spline surface with the free boundary conditions, which interpolates the given
three dimensional data, by using B-spline and an accurate method to estimate pit-excavation volume. The proposed
method should be of interest to surveyors especially concerned with accuracy of volume computations. We present
some computational results showing that our proposed method provides good accuracy.
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1. Introduction

The estimation of pit excavation volume is an
interesting issue in many surveying and highway
applications. Several methods have been developed for
estimating the pit excavation volume ranging from a
simple formula to more complicated formulas and
numerical methods. The standard methods can be
characterized with three basic ideas such as trapezoidal
rule, Simpson rule and cubic spline function. The
trapezoidal method, which is the simplest method,
approximates the ground profile of each planar grid
cell and estimates the pit excavation volume as the
product of the area of the grid cell and the average
excavation heights of the grid cell comers (Anderson
et al, 1985; Schmidt and Wong 1985; Wolf and Brinker
1989; Moffit and Bossler 1998). This method is the
commonest, but the interfaces between the approxi-
mating planes are sharp and it may not properly describe
the ground surface. The Simpson-based methods improve
the accuracy of the volume estimation for the approxi-
mation of the ground surface by considering a second-
degree polynomial or a third-degree polynomial in each
direction of the grid (Easa 1988; Chambers 1989). In
Easa (1988), it was assumed that the rectangles formed

by the grid were of equal size- that is, the grid was
formed by taking equal size intervals along each of
the axes. Chambers (1989) generalized Easa’s result
by allowing grids in which the rectangles were of
unequal sizes-that is, the grid were formed by parti-
tioning the axes into unequal intervals. But both
methods have a common drawback: the interfaces of
the approximating surfaces are sharp. To eliminate this
drawback, Chen and Lin (1991) proposed the cubic
spline method, which provides smooth connections
between the approximating cubic spline polynomials
with the natural boundary conditions. Also, Easa
(1998) developed the cubic Hermite polynomial method,
which guarantees smooth connections between the
approximating cubic Hermite polynomials. Yoo, Lee
and Mun (2002) extended Chen and Lin’s idea to the
three dimensional problem and developed the method
providing an interpolating cubic spline surface with
the natural boundary conditions.

In this paper, we propose a method of finding a
cubic spline surface with the free boundary conditions,
which interpolates the given three dimensional data,
by using cubic B-splines. Our proposed method
approximates the ground surface with the cubic spline
polynomial with the free boundary conditions along
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both x and y directions. We describe basic properties
of spline and Ei-spline without proofs in section 2. We
also introduce :\ piecewise cubic spline surface with the
free boundary conditions interpolating given data and
its induced lincar systems in section 3. The computa-
tional results of the proposed method and some comments
are presented 'n section 4.

2. Basic Results of Spline and B-spline

In this section, we describe basic properties of spline
and B-spline without proofs. For the details of proofs,
refer to Farin (1988) and Lyche and Morken (1999).

Let two poits ¢;=(x;, y) and c;=(x,, y,) be
given. Then the line segment joining above two points
can be expressed as

to—t t—t,
t3'_t2 Cl+ tg‘_‘tz Ca, te[tz,t3],

M

Mtley, cos by, £)) =

The two parameters ¢, and ¢; are arbitrary real
numbers with £,(¢;. Regardless of the choice of
parameters the resulting curve is always same. The
construction of a piecewise linear curve based on some
given points (¢;)"—; is quite obvious; we just connect
each pair of points by a straight line. More specifically,
we choose » numbers (¢,) 77 with ¢<¢;y, for

i=2,3,-,n, and define the curve f by

dtley, ez ty, 1) telt, t],

Htley, c3s b, by) telty, 4],
o= @

p(tlcn—ly Cns tnv tn+1) te[tn: tn+1]

The points (c;)%-, are called the control points of
the curve, while the parameters ¢= (¢, %4, which give
the value of ¢ at the control points, are referred to as
the knots, or knot vector, of the curve. If we introduce

the piecewise constant functions
1, =Kt
Bi,O(t):[ 3
0, otherwise
and set p, ()=p(tlc; y, cii ti, t+1), We can write

A#) in (2) more precisely as

A= 2, #:1() B o8 @
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This construction can be generalized to produce
smooth, piecewise polynomial curves of higher degrees.
For the quadratic spline curve, let three control points
¢1, €9 3 be given and set the knots with £,<#;<#<#¢.
Then we can obtain the quadratic spline curve by using
two straight lines passing through ¢, and ¢;, ¢, and
c3 in the following way.

ptler, o, c35 1, b, Uy, 85)
t,—t t—t

— . 3 .
= L=t tley, ¢ b, 8y) + Li— ts .ﬁ(flcz,cayfa,fs)-(s)

Here, tis the parameter which is in [¢;, #]. For any

n

» control points (¢;)%-,;, we can define the piecewise
quadratic spline curve by using the formula (5) and the
knot vector () 732 with f,<t3<--<t 415t pyoe

Htley, co, €35 ta, by, 4, B5), i<t

tley, €3, 45 b, B, b5, 1),
AH=

LSt

p(ﬂcn—-Zycn—lycn; tﬂ—lv tn, tn+lvtn+2)v tnststn‘*'l-

(©)

Set p,=p(tlc;,_g,ci-1,Cistict, bistivy, tiv)-
Then we can write the formula (6) more precisely as

A= 3, 552D Bio(d ©

Similarly, we can define the piecewise cubic spline
curve.

A= 2, 2:is(DB (D, ®

where, for the parameter t<[#;,¢;44],

b:3(D

P(tlcieg, Cimg CimtyCis tima, bimta b tign, Eivas Eivs)

Il

tivy— ¢
:——.-t-lﬂ— -ptle s, cimpnciciitima timt, bivts tird)
i+1 H
t_f,'
+ . __t,P(ﬂCi—z,Ci—hCi;fi—1,fi.ti+z.ti+3).
i+1 i

The formulas (4), (7), and (8) can also be written
in the form of

A= 3 e Bidd ©

where B, (#) is given by the recurrence relation
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ti

t_
B, {)=——"7B,;s.1(9)
tz+d tz

Livi+a— ¢t

. “—— B9,
Liv1ea— it

d=1,2,3. (10)

Here, the function B; ,is called a B-spline of degree
d(d=1,2,3) with knots £ In (10) possible divisions
by zero are resolved by the convention that ‘anything
divided by zero is zero’. Note that we can obtain a
B-spline of degree 4 by the formula (10) when an
appropriate knot vector is given, and get a piecewise
spline of degree 4 with a linear combination of B-
splines. The B-spline B, depends only on the knots
(¢) 72471, To understand the nature of B-splines,
B, )= B(#t;, -, tj+ar1) is sometimes useful. For
example, if @=2 and if we set (7, tiya fjrasr)
= (g, b, ", c,d), then (10) can be written

B(tla, b, c.d)()=-"=% B(tla,b,+, ()

+ 4= B(tlb, -, e, d)(D.(11)

For any given m points (x;,y,)’7=1, we have to
choose an appropriate knot vector in order to find a
piecewise spline Ax) in an appropriate piecewise
spline space such that Ax) =y, for ;=1,2,---, m. We
use the Schoenberg-Whitney nesting conditions, see
Farin (1988) and Lyche and Morken (1999), on the knot
vector for the existence and uniqueness of the piecewise
spline Ax). For example, if we want to find a piecewise
cubic spline Ax), (%1, %1.%1, %1, %2, " % m—1» Zts Kows Koo Xo)
is an appropriate knot vector for the natural or Hermite
boundary conditions and (x;, x; x;, %1, %3, X4.***, X 2,
Xoms Xy X X} 18 SUitable for the free boundary condi-
tions.

Note that there are many ways to determine an
appropriate knot vector satisfying the Shoenberg-Whitney
nesting conditions for a piecewise cubic spline surface
interpolating the given data. In this paper, we only
concentrate on the piecewise cubic spline with the free
boundary conditions. We just take a knot vector with

(1, XX, X1 X3 X4y X 20 Koy Koy Xy X TOT  the

free boundary conditions satisfying the Schoenberg-
Whitney nesting conditions which generates the number
of m B-splines. Then the s by m linear system
induced by the interpolation problem can be solved
uniquely by the choice of the above knot vector. We
can extend this idea to the three dimensional problem
in the next chapter.
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3. Spline Surface Interpolation and its
Induced Linear Systems

We consider an interpolation problem at a set of gridded
data (x,y;, f;) 7o) i=1, where a=x;<xa<- %y = b
and c= y;{y,<-{y ,,= d. For each ¢, 7, we can think
of £ as the value of an unknown function f= Ax,v)
at the point (x, v).

We want to find a method to find a piecewise cubic
spline surface g= g(x, y) satisfying the free boundary
conditions in a tensor product space S;&)S, such that
g(x;,v)=f; where i=1,--,m; and j=1,-, m,.

For the free boundary conditions in the three dimen-
sional problem, we just take the knot vectors with

(1, 1,200, X1, X3, %47 % =20 X ys X s X s X ) ADA
(N Y15, 90, 33, 90 Y m=2, Y mys ¥ s ¥ mys ¥ ) TOT the
x-direction and the y-direction respectively. We think
of S, and S, as two univariate piecewise cubic spline
spaces S)= span{¢;,":",¢,,} and S;= span{g, -,
® m,}» where the ¢'s and ¢'s are bases of cubic B-
splines for the two spaces.

With gin the form g(x,») = 2
“=
the above interpolation conditions
equations

ﬁl C 5,0 P V) 6 4(x),

q=

lead to a set of

3 3 cherd) B = 14 (12)

forall ;=1,--,m;and j=1,---, m,. This double sum
can be split into two sets of simple sums

Ridasblo) = a3)

2 Cpopil3) = o (14)

We can interpret (13) and (14) as follows: First,
interpolate in the x-direction by determining the
piecewise cubic spline curves X interpolating the data
f ;- And then make a piecewise cubic surface by filling
in the space between these curves. Obviously, this
process is symmetric in x and y directions.

We can denote the formula (13) in matrix form as

¢1(x1) ¢2(x1) ¢m1(9€1) d1,;‘ ﬂxl,yl‘)

¢1(x2) ¢z(x2) ¢m,(xz) dz,;' f(xz,yj)

$1(x ) DX ) o B (X)) \d s A% s v7)
(15)
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for all ;=1,2,---, my.
Similarly, tte formula (14) can be written as

¢’1(y1) ¢2(J’1) 14 mz(yl) Cil di

e1(y2)  @a(3) 4 mz(yz) Cia diy
= (16)

21 m) P2V m) PV m)) \Cim, d; m,

for all :=1,2,-, m,.
After solviny the linear systems (15) and (16), we

can determine “he control points ¢;; (i=1,2,:, my,
j=1,2,+,my). Substituting the control points ¢ ;

into g(x,y)= gl glc,,qqaq(y)dbp(x), we find a piece
wise cubic splinz surface g(x,y) such that g(x;, v)=7;
for ;/=1,2,---,m; and ;=1,2, -, m,. With this inter
polating cubic spline surface g(x, y), we can determine

the approximate volume in the following way.

?Zjl € pa fcd%(y) dy fabsb,,(x) dx.

Volume = Z
" an

1

4. Some Computational Results

We used Maple software to implement our proposed
algorithm. We tested three examples with several cases
given in Yoo, Lee and Mun (2002).

For each example, we considered the following three
cases:

Casel : With cqual intervals [1, 21, 41, 61, 81, 101,
121] 'n the x-direction, but with unequal
intervals [1, 26, 36, 66, 81, 91] in the y
-direction.

Case2 : With both unequal intervals [1, 16, 46, 56, 91,
101, 121] in the x-direction and [1, 19, 37,
55, 73, 91] in the y-direction.

Case3 : With both unequal intervals [1, 16, 46, 56, 91,
101, 121] in the x-direction and [1, 26, 36,
66, 81, 91] in the y-direction.

2 2 2
The first example is Ax,y) = 1(3)’00 + 1650360 + 18700
for 1<x<121 and 1<y<9l. .
1 121
We used the exact value with fl fl fx, ) dedy =

267,160.68(m").
Here we cari summarize computational results with
the natural and free boundary conditions.

- 28 -

2 2 2
Table 1. Results and Errors of ﬂx,y)==—lh+l—gg®+T&)‘d
With Free With Natural
Exact Boundary Cond. | Boundary Cond.
Volume | Approximate Approximate
Volume |Error| Volume |Error
Case 1/267,160.68| 267,160.68 | 0.0 | 268,039.55 | 0.3
Case 2|267,160.68| 267,160.68 | 0.0 | 267,681.53 | 0.2
Case 3/267,160.68| 267,160.68 | 0.0 | 268,011.72 | 0.3
The second example was Ax,y) = 20+py for

10V x
1<x<121 and 1<y<91.

) 91 121
We used the exact value with j; fl Ax, y) dedy =

66, 795.76421(m).
Here we can summarize computational results with
the natural and free boundary conditions.

Table 2. Results and Errors of Ax,y= lOiﬂr/l

10V x
With Free With Natural
Exact | Boundary Cond. | Boundary Cond.
Volume i i
Approximate Error Approximate Error
Volume Volume
Case 1/66,795.76] 76,187.37 | 14.1 79,013.37 | 18.3
Case 2|66,795.76) 68,972.52 | 3.3 | 68,725.17 | 2.9
Case 3|66,795.76] 68,994.13 | 33 | 68,881.02 | 3.1
— (g

The third example was Ax,y)=50¢
for 1<x<121 and 1<y<91.
91 121
We used the exact value with fl J; Ax, ) dedy

=~ 175877.6457(m).
Here we can summarize computational results with
the natural and free boundary conditions.

— (Y (gl
Table 3. Results and Errors of Ax,y=50e

With Free With Natural
Exact Boundary Cond. | Boundary Cond.
Volume i i
Approximate Error Approximate Error
Volume Volume
Case 1|175,877.65| 170,166.13 | 3.3 | 176,734.67 | 0.5
Case 2/175,877.65| 173,645.05 | 1.3 | 176,747.92 | 0.5
Case 3{175,877.65| 170,120.72 | 3.3 | 176,114.72 | 0.1
Algorithm:

1. Read data: Ax;,y,) for i=1,2,---,my, j=1,2,--, m,.

2. Define the knot vectors for the x and y directions.
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For example, use

(xl»xl,xl’xl,xS’x4,"'yxm1—2sxml;xm,,xmlyxml) and

DL MY VLY Y8 Y22 Y s Yoy Y omys ¥ my) TOT
the free boundary conditions.

3. Construct the cubic B-spline by using the formula
(10).

4. Solve the formula (13) and then solve the formula
(14) to get ¢, ;.

5. Construct the interpolating cubic spline surface with
the formula (12).

6. Calculate the approximate volume with the formula

a7.
5. Conclusions

We obtained similar accuracy for several examples
and cases when we used the interpolating cubic spline
surface with the natural and free boundary conditions.
We could not say that one method is better than the
other method. It only depends on the problem and the
case. When we consider the problem in that the
difference of errors between the worst case and the best
case is large (the second example), the method with
the free boundary conditions is robust in that the
difference of errors between the worst case and the best
case given by the method with the free boundary-
conditions is smaller than the difference of errors
between the worst case and the best case given by the
method with the natural boundary conditions.
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