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A DEVANEY-CHAOTIC MAP WITH POSITIVE ENTROPY

ON A SYMBOLIC SPACE

Shankar Bangalore Ramesh and Chetana Urva Vasu

Abstract. Chaotic dynamical systems, preferably on a Cantor-like space

with some arithmetic operations are considered as good pseudo-random
number generators. There are many definitions of chaos, of which Deva-

ney-chaos and pos itive topological entropy seem to be the strongest. Let
A = {0, 1, . . . , p− 1}. We define a continuous map on AZ using addition

with a carry, in combination with the shift map. We show that this

map gives rise to a dynamical system with positive entropy, which is also
Devaney-chaotic: i.e., it is transitive, sensitive and has a dense set of

periodic points.

1. Introduction

We use the following notation: N - the set of all non-negative integers, N+ -
the set of all positive integers, Q - the field of rational numbers, Z - the ring of
all integers, Qp - the field of p-adic numbers and Zp - the ring of p-adic integers.

Chaotic dynamical systems, preferably on a Cantor-like space with some
arithmetic operations are considered as good pseudo-random number genera-
tors. There are many definitions of chaos, of which Devaney-chaos and positive
topological entropy seem to be the strongest. We construct a map that is
Devaney chaotic and has positive entropy, on a symbolic space.

For any prime p, Qp is the completion of Q in the p-adic norm [5]. Every
p-adic number is represented uniquely as a sequence of the form

· · · d−2d−1

0th︷︸︸︷
d0 .d1 · · · dm︸︷︷︸

6=0

,

where di are the p-adic digits ∈ {0, 1, 2, . . . , p− 1}. Its p-adic norm is pm. The
ring of p-adic integers, Zp, consists of elements with norm less than or equal to
one. (If p is not a prime, then it is a pseudo-norm, which gives a ring Qp, not
a field.) To add two p-adic numbers, align the zeroth coordinates (just before

Received May 16, 2018; Accepted August 29, 2018.

2010 Mathematics Subject Classification. Primary 54H20, 37B10.
Key words and phrases. discrete chaotic transitive positively expansive entropy.

c©2019 Korean Mathematical Society

967



968 S. BANGALORE RAMESH AND C. URVA VASU

the dot) and proceed with addition with the ‘carry’ moving from right to left.
Here is an example of addition in Q7.

· · · 462535.354300 · · ·
+ · · · 320656.4100 · · ·

− − −−−−−−−−−−−
· · · 113525.064300 · · ·

Let A = {0, 1, . . . , p− 1}, where p is a prime, have discrete topology. Consider
the symbolic space AZ, in the product topology. Its elements are bi-infinite
sequences of the form

x = · · · x−r−1 x−r x−r+1 · · ·x−2 x−1
0th︷︸︸︷
x0 x1 x2 · · ·xr · · · .

For any x and y in AZ, we define d(x, y) = p−j where j= min {i ≥ 0 |xi 6= yi or
x−i 6= y−i}. This metric induces the product topology. It is a compact, totally
disconnected perfect space, or a Cantor space. The most important continuous
self map on it is the shift map σ.

For any element x = · · · x−r−1 x−r x−r+1 · · ·x−2 x−1
0th︷︸︸︷
x0 x1 x2 · · ·xr · · ·

of AZ, σ(x) is given by σ(x)i = xi+1. As sets, Zp ⊂ Qp ⊂ AZ = Zp × Zp.
We extend the addition operation in Zp or Qp to AZ, and in combination

with the shift map obtain chaotic functions.
We can “add” a constant a in Qp to any element of AZ in the obvious way.

For any a ∈ Qp and x ∈ AZ, x+ a can be added as follows. If

a = · · · a−2 a−1 a0. a1 a2 · · · am,
x = · · · x−2 x−1 x0. x1 x2 · · · xm xm+1 xm+2 · · · ,

then x+a = y, where yi = xi for i > m, ym = xm+am mod p, ym−1 = am−1+
xm−1+ the carry mod p, and so on. (This is similar to the well known adding
machine.) The combination of this with a power of σ, say f(x) = σk(x) + a,
gives a map conjugate to σk.

When this function f is applied to x, the coordinates at the far right are
affected only by the shift map. We look for a function that affects all the
coordinates. For computational purposes, it is good if we can start calculating
the digits of f(x) at the centre, that is around the 0th coordinate and proceed
iteratively in both directions. We extend the above addition to an addition in
AZ. It would be better if we can add two elements of AZ, in a way different
from the usual coordinate-wise addition mod p, i.e., making use of the ‘carry’.

Let a = · · · a−2 a−1
0th︷︸︸︷
a0 a1 a2 · · · and b = · · · b−2 b−1

0th︷︸︸︷
b0 b1 b2 · · · be

any two elements of AZ.



A DEVANEY-CHAOTIC MAP WITH POSITIVE ENTROPY 969

We define a new kind of ‘addition’ as follows.

a + b = c = · · · c−2 c−1
0th︷︸︸︷
c0 c1 c2 · · · ,

where · · · c−2 c−1 c0 is the usual sum of the p-adic integers · · · a−2 a−1 a0 and
· · · b−2 b−1 b0, with carries transferred to the left, and · · · c2 c1 is the usual sum
of the p-adic integers · · · a2 a1 and · · · b2 b1. In other words, the given elements
are split after the 0th position, the two parts are considered as separate p-adic
integers and added in the usual way. For the left part, addition proceeds from
right to left, and for the right part it proceeds from left to right. Actually
this operation makes AZ into a topological group. The additive identity of the
group is the zero sequence. The additive inverse of an element a is defined in
a similar fashion as that of p-adic integers.

Let a−m be the first non-zero digit of a on the left side (starting at the 0th po-
sition), and let an be the first non-zero digit of a on the right side (starting at the

1st position). That is, a = · · · a−m−1 a−m︸︷︷︸
6=0

0 0 · · · 0

0th︷︸︸︷
0 0 · · · 0 an︸︷︷︸

6=0

an+1 · · · .

Then we define

a = · · · (p− 1− a−m−2) (p− 1− a−m−1)

(−m)th︷ ︸︸ ︷
(p− a−m) 0 · · ·

0th︷︸︸︷
0 0 · · · 0

nth︷ ︸︸ ︷
(p− an) (p− 1− an+1) (p− 1− an+2) · · · .

Using this addition operation in combination with the shift map we get some
interesting chaotic maps.

2. Basic definitions

Let X be a topological space and f a continuous self map on X. We use the
following standard definitions and results on a system (X, f) mostly from [7],
[8] and [9]. Usually X is assumed to be a compact space.

A point x ∈ X is called periodic if there exists an integer n > 0 such that
fn(x) = x. It is eventually periodic if fn(x) is periodic for some n > 0.

A point x ∈ X is called quasi-periodic or regularly recurring if for every
neighbourhood U of x, there is j > 0 such that for any n ≥ 0, fnj(x) ∈ U .

A point x ∈ X is a non-wandering point if for every open set U containing
x, there is an n > 0 such that fn(U)

⋂
U 6= ∅. If all points of X are non-

wandering, then (X, f) is a non-wandering system.
The system (X, f) is transitive if for any nonempty open sets U and V in

X, there exists n > 0 such that fn(U)
⋂
V 6= ∅. A point x is transitive if its

orbit under f is dense. It is known that (X, f) is transitive if and only if it has
at least one transitive point. If (X, fn) is transitive for all n ∈ N, (X, f) is said
to be totally transitive.
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The system (X, f) is weakly mixing if the product system (X × X, f × f) is
transitive, and it is strongly mixing if for any two non-empty open sets U and
V there is N > 0 such that fn(U)

⋂
V 6= ∅ for all n ≥ N .

The system (X, f) is called minimal if it contains no proper subsystem.
A subset A of X is minimal if (A, f) forms a minimal subsystem. A closed
invariant subset A of X is minimal if and only if the orbit of every point of A
is dense in A. A point x ∈ X is called minimal if it belongs to some minimal
subset of X.

When X is a metric space, a few more definitions can be given.
A point x is said to be equicontinuous, if for every ε > 0 ∃ δ > 0 such that

for any y, d(x, y) < δ =⇒ d(fn(x), fn(y)) < ε, ∀ n > 0. The system (X, f)
is equicontinuous if for every ε > 0 ∃ δ > 0 such that for any x and y in X,
d(x, y) < δ =⇒ d(fn(x), fn(y)) < ε, ∀ n > 0. If X is compact, it means that
every point is an equicontinuous point. (X, f) is sensitive (to initial conditions)
if there exists ε > 0 such that ∀x ∈ X,∀ δ > 0, there exists y with d(x, y) < δ
and n ≥ 0 such that d(fn(x), fn(y)) ≥ ε. A sensitive system cannot have
equicontinuous points. There are systems that are not sensitive and do not
have equicontinuous points. But this cannot happen in a transitive system [2].

For δ > 0, a δ-pseudo orbit or δ-chain is a finite or infinite sequence of points
(xn)mn=0, m ∈ N

⋃
{∞}, such that d(f(xn), xn+1) < δ for n < m. (X, f) has the

shadowing property if for any ε > 0 ∃ δ > 0, ∀ x0, . . . , xn, ( ∀i, d(f(xi), xi+1)) <
δ =⇒ ∃ x, ∀ i, d(f i(x), xi) < ε). It means that every finite δ-chain is ε-
shadowed by some point. We say that (X, f) has the pseudo-orbit tracing
property (POTP), if for each ε > 0 there is a δ > 0 such that every infinite
δ-pseudo orbit is ε- shadowed by some point. If X is compact, the shadowing
property implies the pseudo-orbit tracing property.

There are two types of expansiveness:

(i) (X, f) is said to be expansive if there exists an ε > 0 such that for all
x and y in X with x 6= y, there is n ∈ Z with d(fn(x), fn(y)) ≥ ε.

(ii) (X, f) is said to be positively expansive if there exists an ε > 0 such that
for all x and y in X with x 6= y, there is n ≥ 0 with d(fn(x), fn(y)) ≥ ε.

If X is compact and infinite, it is well known that X cannot have a positively
expansive homeomorphism into itself [4].

To quantify the complication of a dynamical system we associate a non-
negative real number called topological entropy with it. The larger this number,
the more complicated the dynamical system is. We measure the exponential
growth rate of essentially different orbit segments.

For a compact dynamical system, entropy is defined using open covers as in
[1]:

Let U be an open covering of X. Let N(U ) be the minimum number of
elements of U that are needed to cover X. Since X is compact, this number
exists. If U and V are finite open covers of X, their joint open cover, denoted
by U ∨ V is {U ∩V |U ∈ U , V ∈ V , U ∩V 6= ∅}. If f is a continuous function
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from X to itself, Nn(U ) = N(U ∨ f−1(U ) ∨ f−2(U )∨ · · · ∨f−(n−1)(U )).
The topological entropy of the open cover U of X is

h(U , f) = lim
n→+∞

logNn(U )

n
.

The topological entropy of (X, f), denoted by h(X, f) is defined to be

sup{h(U , f) |U finite open cover of X}.

If the topological entropy of (X, f) is positive, (X, f) is said to be chaotic.
(X, f) is said to be Devaney chaotic if it is transitive, sensitive and has a dense
set of periodic points. Transitivity is irreducibility in a certain sense, sensi-
tivity contributes towards irregularity, and density of periodic points towards
regularity. (Actually transitivity and density of periodic points together imply
sensitivity.)

Two systems (X, f) and (Y, g) are conjugate if there is a homeomorphism
h : X → Y such that g = hfh−1.

3. A Devaney chaotic map with positive entropy

Consider the addition operation defined in Section 1 on AZ. We can combine
it with the shift map by taking h(x) = σk(x) + a, for some fixed element a of
AZ. This turns out to be an expansive homeomorphism with positive entropy.
It is not known whether it is Devaney chaotic. In order to get a map that is
Devaney-chaotic and has positive entropy, we modify the above map as follows.
Assume that k is positive, and first consider g(x) = σk(x) + x. This is not
injective, hence cannot be modified to get an expansive homeomorphism. We
modify it to get a positively expansive map f . For this, every application of
f should increase the distance between any two points (if they are not already
far apart).

Consider any two elements x and y of AZ. Suppose that xi = yi for 0 ≤ i < j,
and xj 6= yj for some j > k. That is, the first difference in the coordinates of x
and y, towards the right side of 0th position, appears at jth position. Then for
σk(x) and σk(y), the first difference appears at the (j−k)th position. It follows
that for g(x) and g(y), the first difference appears at the (j − k)th position.
In other words, if d(x, y) = p−j , then d(g(x), g(y)) = p−j+k, i.e., the distance
is increased by a factor of pk. But if there is no difference in the positively
numbered coordinates of x and y, this cannot happen.

So we combine g with a map that we call a ‘reflection’, that transfers the
left-hand-side coordinates to the right, and vice versa. The most natural map
is r, the reflection about the central 0th coordinate, given by (r(x))i = x−i. It
is clearly an isometry. The map f = r ◦ g is positively expansive.

It is a surjective map with each element having exactly pk pre-images. In
fact, for any y ∈ AZ, and for any fixed k coordinates of x around the zeroth

one, we can find a unique x with f(x) = y. Similarly if we can fix central nk
coordinates to get a unique pre-image for y under fn, we can get transitivity.
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To achieve this we modify r by defining r′ given by (r′(x))i = x−i+1. That is
the 0th coordinate is taken to the first, and vice versa. Now we take f(x) =
r′(σk(x) + x).

Proposition 3.1. The function f : AZ → AZ given by f(x) = r′(σk(x) + x) is
continuous and positively expansive.

Proof. Obviously, σk is a homeomorphism and r′ = σ−1 ◦ r is a homeo-
morphism. Therefore it is enough to verify that the addition map given by
(x, y) 7→ x + y is continuous from AZ × AZ to AZ. Then the function f is
(uniformly) continuous on AZ.

For any (x, y) and (x′, y′) in AZ×AZ, d(x, x′) < p−j and d(y, y′) < p−j ⇒
d(x + y, x′ + y′) < p−j . Thus the operation + is continuous. To verify that
f is positively expansive, choose an ε < p−k. Suppose that x 6= y, and
d(x, y) = p−j . If j ≤ k, take n = 0.

Let d(x, y) = p−j , with j > k.

Let x = · · ·x−j x−j+1 · · · x−2 x−1
0th︷︸︸︷
x0 x1 x2 · · · xj−1 xj · · · . Then

σk(x) = · · · xk−j xk−j+1 · · ·xk−2 xk−1
0th︷︸︸︷
xk xk+1 xk+2 · · ·xk+j−1 xk+j · · · .

Then xi = yi for −j + 1 ≤ i ≤ j − 1, and either xj 6= yj or x−j 6= y−j . We
denote σk(x) + x by x′ and σk(y) + y by y′.

Case (i) Suppose that xj 6= yj . Then on the right side, (σk(x))i = (σk(y))i
for 0 ≤ i < j − k, and (σk(x))j−k 6= (σk(y))j−k. On the left side,
(σk(x))i = (σk(y))i for −j+1 ≤ i ≤ 0. Therefore, x′i = y′i for −j+1 ≤
i < j − k, and x′j−k 6= y′j−k. When r′ is applied (r′(x′))i = (r′(y′))i
for −j + k+ 1 < i ≤ j and (r′(x′))−j+k+1 6= (r′(y′))−j+k+1. Therefore
d(f(x), f(y)) = p−j+k+1. The distance gets multiplied by a factor pk+1,
when f is applied.

Case (ii) If xj = yj , then x−j 6= y−j . Then on the right side, (σk(x))i = (σk(y))i
for 0 ≤ i ≤ j−k. On the left side (σk(x))i = (σk(y))i for −j+1 ≤ i ≤ 0.
Therefore x′i = y′i for −j + 1 ≤ i ≤ j − k and x′−j 6= y′−j . When r′ is
applied (r′(x′))i = (r′(y′))i for −j + k + 1 ≤ i ≤ j and (r′(x′))j+1 6=
(r′(y′))j+1. For i < −j + k + 1 we cannot conclude anything about
(r′(x′))i and (r′(y′))i . Therefore d(f(x), f(y)) is at least p−j−1. Either
the distance d(f(x), f(y)) is increased by a sufficiently large factor, or
we are back ton Case (i), and another application of f will increase the
distance by a factor pk+1.

Thus in both cases successive applications of f increase the distances till finally
d(fn(x), fn(y)) ≥ ε for some n. �

Note that f is positively expansive implies f is sensitive, because AZ is
perfect [7]. Next we verify that f is transitive.
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Proposition 3.2. Let f : AZ → AZ be given by f(x) = r′(σk(x)+x), where k is

a positive integer. Let y = · · · y−2 y−1
0th︷︸︸︷
y0 y1 y2 · · · be given from AZ, and let

n be any positive integer. For any set of p-adic digits a−nk+1, a−nk+2, . . . , ank,
there is a unique x in AZ with xi = ai for i = −nk + 1,−nk + 2, . . . , nk and
f2n(x) = y.

Proof. We use induction on n.

Let n = 1. Let a−k+1, a−k+2, . . . , ak ∈ A and y = · · · y−2 y−1
0th︷︸︸︷
y0 y1 y2 · · ·

∈ AZ be given. Consider y′ = r′(y) = · · · y3 y2
0th︷︸︸︷
y1 y0 y−1 · · · . Consider the

following x where xi indicates a known coordinate xi = ai, and a ∗ indicates
that the corresponding coordinate is yet to be determined.

x = · · · ∗ ∗ ∗ x−k+1 · · ·
0th︷︸︸︷
x0 x1 · · ·xk ∗ ∗ ∗ · · · ,

σk(x) = · · · ∗ ∗ ∗ x−k+1 · · · x0 x1 · · ·
0th︷︸︸︷
xk ∗ ∗ · · · .

Note that in σk(x) + x, the coordinates from (−k + 1)th to 0th are fixed.
Call these coordinates as z−k+1, . . . , z0 respectively. We have to find z which
is as follows:

z = · · · ∗ ∗ ∗ z−k+1 · · ·
0th︷︸︸︷
z0 ∗ ∗ ∗ · · · .

Then z′ = r′(z) will be · · · ∗ ∗ ∗ · · ·
0th︷︸︸︷
∗ z0 z−1 · · · z−k+1 ∗ ∗ ∗ · · · , where

the ∗s indicate that the corresponding coordinates are yet to be determined.

σk(z′) = · · · ∗ ∗ ∗ z0 · · ·
0th︷ ︸︸ ︷

z−k+1 ∗ ∗ ∗ · · · . The remaining coordinates of z′

can be easily found so that σk(z′) + z′ = y′ = · · · y3 y2
0th︷︸︸︷
y1 y0 y1 · · · .

We have to carry out the calculations for the left and right sides separately.
For the left side first fix z′0, which is the same as z1, such that z1 + z−k+1 ≡
y1 mod p. If z1+z−k+1 > p, let c0 ( the carry) be 1, otherwise let c0 be 0. Next
choose z′−1 = z2 such that z2 + z−k+2 + c0 ≡ y2 mod p, and call the carry as

c−1. Proceed similarly. At every step only the coordinate of σk(z′) is known,
and the corresponding coordinate of z′ has to be calculated.

The same procedure applies to the right side also. First find z′k+1 = z−k,
next find z−k−1, and so on. Here, at every step the coordinate of z′ is known and
the corresponding coordinate of σk(z′) has to be calculated. Thus z′ is uniquely
determined such that σk(z′) + z′ = y′, and r′(σk(z′) + z′) = r′(y′) = y. Thus
f(z′) = y.

Now z = r′(z′) is known. Hence x can be determined such that σk(x)+x = z,
or r′(σk(x) + x) = z′, i.e., f(x) = z′, and f2(x) = f(z′) = y.
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Next we assume the result holds for n− 1, and prove it for n.

Let p-adic digits a−nk+1, a−nk+2, . . . , ank and y= · · · y−2 y−1
0th︷︸︸︷
y0 y1 y2 · · ·

be given. We have to find x such that xi = ai for i = −nk + 1,−nk +
2, . . . , nk, and f2n(x) = y. Consider the following x, where xi indicates a
known coordinate =ai, and a ∗ indicates that the corresponding coordinate is

yet to be determined. x = · · · ∗ ∗ ∗ x−nk+1 · · ·
0th︷︸︸︷
x0 x1 · · ·xnk ∗ ∗ ∗ · · · .

Then

σk(x) = · · · ∗ ∗ ∗ x−nk+1 · · ·
((n−1)k)th︷︸︸︷
xnk ∗ ∗ ∗ · · · .

Since 2nk coordinates of x, from −nk + 1 to nk are fixed, it follows that in
σk(x) + x, the 2nk − k coordinates from (−nk + 1) to (n− 1)k are fixed. Call
these fixed coordinates as z−nk+1, . . . , z(n−1)k. We have to determine z which
has to be as follows:

z = · · · ∗ ∗ ∗ z−nk+1 · · ·
0th︷︸︸︷
z0 z1 · · · z(n−1)k ∗ ∗ ∗ · · · .

Consider z′ = r′(z).

z′ = · · · ∗ ∗ ∗
(−(n−1)k+1)th︷ ︸︸ ︷
z(n−1)k · · ·

0th︷︸︸︷
z1 z0 · · ·

nkth︷ ︸︸ ︷
z−nk+1 ∗ ∗ ∗ · · · ,

σk(z′) = · · · ∗ ∗ ∗
(−nk+1)th︷ ︸︸ ︷
z(n−1)k · · · z1 z0 · · ·

(n−1)kth︷ ︸︸ ︷
z−nk+1 ∗ ∗ ∗ · · · .

Thus we are fixing coordinates from (−(n−1)k+1)th to (n−1)kth, in σk(z′)+
z′, which we call as w. Consider w′ = r′(w), in which coordinates from
(−(n−1)k+1)th to (n−1)kth are fixed. By induction hypothesis the remaining
coordinates of w′ can be uniquely determined so that f2(n−1)(w′) = y. Now w
is uniquely determined, so we can find z′ uniquely such that σk(z′) + z′ = w,
which implies r′(σk(z′) + z′) = w′, or f(z′) = w′. Since z is uniquely de-
termined, we can find remaining coordinates of x such that σk(x) + x = z,
which gives r′(σk(x) + x) = f(x) = r′(z) = z′. Then f2(x) = f(z′) = w′, and
f2n(x) = f2(n−1)(f2(x)) = f2(n−1)(w′) = y. �

Proposition 3.3. The function f : AZ → AZ given by f(x) = r′(σk(x) + x),
where k is a positive integer, is transitive.

Proof. Let U and V be any nonempty open sets in AZ. Fix some element y in V .
Consider an ε ball contained in U , centered at some point z. We may assume
that ε = p−j for some positive integer j. Choose n such that nk > j + 1.
There is an x such that xi = zi for i = −nk + 1, . . . , nk, and f2n(x) = y.
Now, d(x, z) ≤ p−nk+1 < p−j , and so x ∈ U . Therefore f2n(U)

⋂
V is non-

empty. �
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By a similar argument, we see that f2 is strongly mixing.
We now prove that the topological entropy is positive. We need the following

result.

Proposition 3.4. The map f(x) = r′(σk(x) + x) is an open map.

Proof. We use the following notation:

U(x, n) - the set of all points z with zi = xi for − nk + 1 ≤ i ≤ nk(1)

for n ∈ N+.

C(x, n,m) - the set of all points z with zi = xi for −mk + 1 ≤ i ≤ nk(2)

for n,m ∈ N+.

It is easily seen that cylinders of type (1) also form a basis for the product
topology.

Now we prove that

(3) f(U(x, n)) = C(f(x), n, n− 1).

Let z ∈ U(x, n). Then zi = xi for −nk + 1 ≤ i ≤ nk, and σk(z)i = σk(x)i for
−nk+1 ≤ i ≤ (n−1)k. It follows that (σk(z)+z)i = (σk(x)+x)i for −nk+1 ≤
i ≤ (n− 1)k, and so (r′(σk(z) + z))i = (r′(σk(x) + x))i, i.e., (f(x))i = f((z))i
for −(n− 1)k + 1 ≤ i ≤ nk. Thus f(U(x, n)) ⊆ C(f(x), n, n− 1).

Now let y ∈ C(f(x), n, n−1). There is a unique pre-image z for this y under
f such that zi = xi for 1 ≤ i ≤ k. We prove that zi = xi for −nk+ 1 ≤ i ≤ nk.

Suppose that zi 6= xi for some i with −nk + 1 ≤ i ≤ nk.
First let zi 6= xi for some positive i, with i ≤ nk, and choose the smallest

such i. Then k < i ≤ nk. Then (σk(z))i−k 6= (σk(x))i−k, and (σk(z) + z)i−k 6=
(σk(x) + x)i−k, which implies (r′(σk(z) + z))−i+k+1 6= (r′(σk(x) + x))−i+k+1,
i.e., y−i+k+1 6= f(x)−i+k+1. This is a contradiction because −(n − 1)k + 1 ≤
−i+ k + 1 ≤ 0.

Now suppose that zi = xi for 0 < i ≤ nk. Then zi 6= xi for some negative
i, with −nk + 1 ≤ i ≤ 0. Consider such i with minimum |i|. Now (σk(z))j =
(σk(x))j , for i ≤ j ≤ 0, but zi 6= xi. Therefore (σk(z) + z))i 6= (σk(x) + x))i,
and so (r′(σk(z) + z))−i+1 6= (r′(σk(x) + x))−i+1, or y−i+1 6= (f(x))−i+1, a
contradiction because 0 < −i+ 1 ≤ nk. Thus f(U(x, n)) ⊇ C(f(x), n, n− 1).

As C(f(x), n, n− 1) is a clopen cylinder, f is an open map. �

Now we use a result from [10, p. 17, Theorem 1].

Theorem 3.5. Let f be a positively expansive self map on a compact metrizable
space. Then the following are equivalent.

(1) f is an open map.
(2) f has the shadowing property .

It follows that the function f(x) = r′(σk(x)+x) has the shadowing property.
Finally, we use a result from [8, p. 6, Theorem 3.3].
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Theorem 3.6. Let (X, f) be a non-wandering dynamical system with the shad-
owing property. Then either (X, f) is equicontinuous or it has positive entropy.

Proposition 3.7. The function f(x) = r′(σk(x) + x) has positive entropy.

Proof. (AZ, f) is transitive implies that it is non-wandering. It is positively
expansive and AZ is perfect implies it is sensitive, and therefore cannot be
equicontinuous. By Theorem 3.6, it has positive entropy. �

4. Density of periodic points

To see that periodic points are dense, we use the following result from [3,
Theorem 3.4.2].

Theorem 4.1. Let (X, f) be a compact dynamical system. If f is a positively
expansive surjection having the pseudo-orbit tracing property, then the set of
periodic points of f is dense in Ω(f), the set of non-wandering points of f .

Proposition 4.2. The function f(x) = r′(σk(x) + x) on AZ has a dense set
of periodic points.

Proof. Since (AZ, f) is transitive, it is non-wandering, i.e., Ω(f) = AZ. It has
the shadowing property, and the compactness of AZ implies it has pseudo-orbit
tracing property. Therefore the set of periodic points is dense in AZ. �

Thus, the system (AZ, f) is Devaney-chaotic.
There are various kinds of chaos, some of which are compared in [9]. Among

them we observe that positive entropy and Devaney-chaos are quite strong, that
is, each of them implies many other types of chaos. Hence we can conclude
that the function f(x) = r′(σk(x) + x) is a good chaotic function.

We now find the fixed points of f .

Proposition 4.3. For any elements a1, a2, . . . , ak of A, there is a fixed point
x of the function f(x) = r′(σk(x) + x) with xi = ai for i = 1, 2 . . . , k.

Proof. Consider the following x, where xi = ai for i = 1, 2, . . . , k, and *s
indicate that the corresponding coordinates are yet to be determined.

x = · · · ∗ ∗ ∗
1st︷︸︸︷
x1 x2 · · ·xk ∗ ∗ ∗ · · · .

Then

σk(x) = · · · ∗ ∗ ∗ x1 x2 · · ·
0th︷︸︸︷
xk ∗ ∗ ∗ · · · .

We have to determine the remaining coordinates of x such that

σk(x) + x = ∗ ∗ ∗ · · ·xkxk−1 · · ·x2
0th︷︸︸︷
x1 ∗ ∗ ∗ · · · .

Find x0 such that x0 + xk ≡ x1 mod p, and let c0 be the carry. Next find x−1
such that x−1 + xk−1 + c0 ≡ x2 mod p, and let c−1 be the carry. Proceed
similarly to find all coordinates on the left side.
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For the right side, first find xk+1 such that x1 + xk+1 ≡ x0 mod p, and let
c1 be the carry. Then find xk+2 such that x2 +xk+2 ≡ x−1 mod p, and let c2
be the carry. Proceed similarly to find all coordinates on the right side of 0th

position. Now σk(x) + x = r′(x) or f(x) = x. �

Thus there are pk fixed points. We can also construct points of period 2.

Proposition 4.4. For any elements a−k+1, a−k+2 · · · a1, a2, . . . , ak of A, there
is a periodic point x of the function f(x) = r′(σk(x) + x) of period 2, with
xi = ai for i = −k + 1,−k + 2, . . . , 1, 2, . . . , k.

Proof. Consider the following x, where xi = ai for i = −k + 1,−k + 2, . . .,
1, 2, . . . , k, and *s indicate that the corresponding coordinates are yet to be
determined.

(4) x = · · · ∗ ∗ ∗ x−k+1 x−k+2 · · · x0
1st︷︸︸︷
x1 x1 x2 · · ·xk ∗ ∗ ∗ · · · .

Then

(5) σk(x) = · · · ∗ ∗ ∗ x−k+1 x−k+2 · · · x1 x2 · · ·
0th︷︸︸︷
xk ∗ ∗ ∗ · · · .

Then z = σk(x) + x is as follows, where z−k+1, z−k+2, . . . , z0 are the known
coordinates and the *s indicate that the corresponding coordinates are yet to
be determined.

(6) z = · · · ∗ ∗ ∗ z−k+1 z−k+2 · · ·
0th︷︸︸︷
z0 ∗ ∗ ∗ · · · .

So, z′ = r′(z) will look like

(7) z′ = · · · ∗ ∗ ∗
1st︷︸︸︷
z0 z−1 · · · z−k+1 ∗ ∗ ∗ · · · .

Or, denoting z′ as

(8) z′ = · · · ∗ ∗ ∗

1st︷︸︸︷
z′1 z′2 · · · z′k ∗ ∗ ∗ · · · .

(9) σk(z′) = · · · ∗ ∗ ∗ ∗z′1 z′2 · · · z′k
1st︷︸︸︷
∗ ∗ ∗ ∗ · · · .

We have to find z and x such that σk(z′) + z′ = x′ = r′(x).
First find z′k+1 (i.e., z−k), such that z′k+1 + z′1 ≡ x′1 = x0 mod p, and let

c1 be the carry. Substitute this value of z−k in (6), so that x−k is uniquely
determined by (5) +(4) = (6).

Now find z′0 (i.e., z1), such that z′0 + z′k ≡ x′0 = x1 mod p, and let c0 be
the carry. Substitute this z1 in (6), to determine xk+1 uniquely by (5) +(4) =
(6).

Next find z′k+2 (i.e., z−k−1), such that z′k+2 + z′2 + c1 ≡ x′2 = x−1 mod p,
and let c2 be the carry. Proceed similarly on both sides. Now we have got
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σk(x) + x = z. So r′(σk(x) + x) = z′, i.e., f(x) = z′, and σk(z′) + z′ = x′, or
r′(σk(z′) + z′) = x, which means f(z′) = x, f2(x) = f(f(x)) = f(z′) = x. �

Remark 4.5. • We cannot generalize this by imitating the proof of (3.2),
and using induction, to get periodic points of period 2n. We can start
with x, whose middle 2nk coordinates are given. We can get [−(n −
1)k + 1]-th to [(n − 1)k]-th coordinates of w. But in place of a fully
known y, we have x, whose 2nk coordinates only are known. The
remaining coordinates of x and w are to be determined simultaneously
such that f2(n−1)(w′) = x and f2(x) = w′, for which we cannot use
induction directly.

• We could as well define the addition without a carry, but then f2

becomes just a Cellular Automaton [6], though f is not.
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[6] P. Kůrka, Topological dynamics of cellular automata, Encyclopedia of Complexity and

Systems Science 2009 (2009), 9246–9268.

[7] , Topological and Symbolic Dynamics, Cours Spécialisés, 11, Société Mathé-
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