• Title/Summary/Keyword: compromised node

Search Result 41, Processing Time 0.028 seconds

Detecting the Compromised Node in PDoS Attack on WSNs (무선 센서 네트워크에서 PDoS 공격에서의 Compromised Node 탐지)

  • Yoon, Young-Jig;Lee, Kwang-Hyun;Hong, Choong-Seon
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2008.06d
    • /
    • pp.97-100
    • /
    • 2008
  • PDoS (Path-based DoS) 공격은 J. Deng에 의해 처음 소개된 DoS 공격의 하나이다. PDoS 공격은 Base Station을 향해 대량의 bogus 패킷을 경로상에 플러딩하여 경로상에 있는 중간 노드들의 배터리 파워를 빠르게 소모를 시켜 수명을 단축시킨다. 그 결과 경로상의 중간 노드들은 수명을 마치게 되어 경로가 마비시켜 전체적으로 네트워크를 마비시킨다. 이런 PDoS 공격을 탐지하기 위해 J. Deng의 one-way hash function을 이용한 탐지방식은 매우 효율적이다. 하지만 공격자가 compromised node을 사용할 경우 이 탐지 기법은 소용이 없어진다. compromised node는 특성상 특별하게 눈에 띄는 비정상 행위를 하지 않는 이상 일반 노드와 구분하기가 힘들며 공격자에 의해 다른 여러 공격에 이용되어 무선 센서 네트워크 보안에 큰 위협이 된다. 이에 본 논문에서는 무선 센서 네트워크상에서 PDoS 공격을 야기하는 compromised node를 탐지하는 방법을 제안한다.

  • PDF

Monitoring-Based Secure Data Aggregation Protocol against a Compromised Aggregator in Wireless Sensor Networks (무선 센서 네트워크에서 Compromised Aggregator에 대응을 위한 모니터링 기반 시큐어 데이터 병합 프로토콜)

  • Anuparp, Boonsongsrikul;Lhee, Kyung-Suk;Park, Seung-Kyu
    • The KIPS Transactions:PartC
    • /
    • v.18C no.5
    • /
    • pp.303-316
    • /
    • 2011
  • Data aggregation is important in wireless sensor networks. However, it also introduces many security problems, one of which is that a compromised node may inject false data or drop a message during data aggregation. Most existing solutions rely on encryption, which however requires high computation and communication cost. But they can only detect the occurrence of an attack without finding the attacking node. This makes sensor nodes waste their energy in sending false data if attacks occur repeatedly. Even an existing work can identify the location of a false data injection attack but it has a limitation that at most 50% of total sensor nodes can participate in data transmission. Therefore, a novel approach is required such that it can identify an attacker and also increase the number of nodes which participate in data transmission. In this paper, we propose a monitoring-based secure data aggregation protocol to prevent against a compromised aggregator which injects false data or drops a message. The proposed protocol consists of aggregation tree construction and secure data aggregation. In secure data aggregation, we use integration of abnormal data detection with monitoring and a minimal cryptographic technique. The simulation results show the proposed protocol increases the number of participating nodes in data transmission to 95% of the total nodes. The proposed protocol also can identify the location of a compromised node which injects false data or drops a message. A communication overhead for tracing back a location of a compromised node is O(n) where n is the total number of nodes and the cost is the same or better than other existing solutions.

Probability Adjustment Scheme for the Dynamic Filtering in Wireless Sensor Networks Using Fuzzy Logic (무선 센서 네트워크에서 동적 여과를 위한 퍼지 기반 확률 조절 기법)

  • Han, Man-Ho;Lee, Hae-Young;Cho, Tae-Ho
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2008.08a
    • /
    • pp.159-162
    • /
    • 2008
  • Generally, sensor nodes can be easily compromised and seized by an adversary because sensor nodes are hostile environments after dissemination. An adversary may be various security attacks into the networks using compromised node. False data injection attack using compromised node, it may not only cause false alarms, but also the depletion of the severe amount of energy waste. Dynamic en-route scheme for Filtering False Data Injection (DEF) can detect and drop such forged report during the forwarding process. In this scheme, each forwarding nodes verify reports using a regular probability. In this paper, we propose verification probability adjustment scheme of forwarding nodes though a fuzzy rule-base system for the Dynamic en-route filtering scheme for Filtering False Data Injection in sensor networks. Verification probability determination of forwarding nodes use false traffic rate and distance form source to base station.

  • PDF

Secure route determination method to prevent sinkhole attacks in INSENS based wireless sensor networks (INSENS 기반의 무선 센서 네트워크에서 싱크홀 공격을 방어하기 위한 강화된 경로 설정 기법)

  • Song, Kyu-Hyun;Cho, Tae-Ho
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.26 no.4
    • /
    • pp.267-272
    • /
    • 2016
  • Wireless sensor networks (WSNs) are vulnerable to external intrusions due to the wireless communication characteristics and limited hardware resources. Thus, the attacker can cause sinkhole attack while intruding the network. INSENS is proposed for preventing the sinkhole attack. INSENS uses the three symmetric keys in order to prevent such sinkhole attacks. However, the sinkhole attack occurs again, even in the presence of INSENS, through the compromised node because INSENS does not consider the node being compromised. In this paper, we propose a method to counter the sinkhole attack by considering the compromised node, based on the neighboring nodes' information. The goals of the proposed method are i) network reliability improvement and ii) energy conservation through effective prevention of the sinkhole attack by detecting compromised nodes. The experimental results demonstrate that the proposed method can save up to, on average, 19.90% of energy while increasing up to, on average, 71.50%, the report reliability against internal sinkhole attacks in comparison to INSENS.

Fuzzy Logic based Next Hop Node Selection Method for Energy Efficient PVFS in WSN (무선 센서 네트워크에서 확률적 투표 기반 여과 기법의 에너지 효율성을 위한 퍼지 로직 시스템 기반의 다음 이웃 노드 선택 기법)

  • Lee, Jae Kwan;Nam, Su Man;Cho, Tae Ho
    • Journal of the Korea Society for Simulation
    • /
    • v.23 no.2
    • /
    • pp.65-72
    • /
    • 2014
  • Sensor nodes are easily compromised by attacker when which are divided in open environment. The attacker may inject false report and false vote attack through compromised sensor node. These attacks interrupt to transmission legitimate report or the energy of sensor node is exhausted. PVFS are proposed by Li and Wu for countermeasure in two attacks. The scheme use inefficiency to energy of sensor node as fixed report threshold and verification node. In this paper, our propose the next neighbor node selection scheme based on fuzzy logic system for energy improvement of PVFS. The parameter of fuzzy logic system are energy, hops, verification success count, CH select high the next neighbor node among neighbor nodes of two as deduction based on fuzzy logic system. In the experimental, our proposed scheme was improvement to energy of about 9% compare to PVFS.

Trust-Based Filtering of False Data in Wireless Sensor Networks (신뢰도 평가를 통한 무선 센서 네트워크에서의 거짓 데이타 제거)

  • Hur, Jun-Beom;Lee, Youn-Ho;Yoon, Hyun-Soo
    • Journal of KIISE:Information Networking
    • /
    • v.35 no.1
    • /
    • pp.76-90
    • /
    • 2008
  • Wireless sensor networks are expected to play a vital role in the upcoming age of ubiquitous computing such as home environmental, industrial, and military applications. Compared with the vivid utilization of the sensor networks, however, security and privacy issues of the sensor networks are still in their infancy because unique challenges of the sensor networks make it difficult to adopt conventional security policies. Especially, node compromise is a critical threat because a compromised node can drain out the finite amount of energy resources in battery-powered sensor networks by launching various insider attacks such as a false data injection. Even cryptographic authentication mechanisms and key management schemes cannot suggest solutions for the real root of the insider attack from a compromised node. In this paper, we propose a novel trust-based secure aggregation scheme which identifies trustworthiness of sensor nodes and filters out false data of compromised nodes to make resilient sensor networks. The proposed scheme suggests a defensible approach against the insider attack beyond conventional cryptographic solutions. The analysis and simulation results show that our aggregation scheme using trust evaluation is more resilient alternative to median.

Misused key detection at cluster header in wireless sensor network (무선 센서 네트워크에서 클러스터 헤더를 통한 오용키 검출을 위한 검증 방법)

  • Park, Min-Woo;Kim, Jong-Myoung;Han, Young-Ju;Chung, Tai-Myoung
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2008.05a
    • /
    • pp.1116-1119
    • /
    • 2008
  • 무선 센서 네트워크는 주변 정보를 감지할 수 있는 다수의 센서들로 구성된 네트워크로 다양한 분야에서 활용되고 있다. 과거에는 무선 센서 네트워크 환경에서 각 센서들 간의 비밀통신이 중요한 이슈였으며, 특히 이를 위한 키 관리 기법들이 주요 연구방향이었다. 하지만 잘 분배되고 관리된 키라 할지라도, 공격자에 의해 특정한 센서 노드(node)가 수집되면, 노출된 노드(compromised node)가 가지고 있는 키가 공격자에게 들어나게 된다. 노출된 공유키(shared key)를 통해 노출되지 않은 정상 노드(non-compromised node) 사이의 대칭키(pairwise key)를 얻을 수 있으며 결국 공격자는 네트워크에 심각한 영향을 줄 수 있는 메시지 삽입 및 수정 공격을 감행할 수 있다. 본 논문에서는 이와 같은 공격을 탐지하고 오용된 키(misused key)를 폐기하기 위한 방법으로 DAC(detection at cluster header) 기법을 제안한다.

Control Method for the Number of Travel Hops for the ACK Packets in Selective Forwarding Detection Scheme (선택적 전달 공격 탐지기법에서의 인증 메시지 전달 홉 수 제어기법)

  • Lee, Sang-Jin;Kim, Jong-Hyun;Cho, Tae-Ho
    • Journal of the Korea Society for Simulation
    • /
    • v.19 no.2
    • /
    • pp.73-80
    • /
    • 2010
  • A wireless sensor network which is deployed in hostile environment can be easily compromised by attackers. The selective forwarding attack can jam the packet or drop a sensitive packet such as the movement of the enemy on data flow path through the compromised node. Xiao, Yu and Gao proposed the checkpoint-based multi-hop acknowledgement scheme(CHEMAS). In CHEMAS, each path node enable to be the checkpoint node according to the pre-defined probability and then can detect the area where the selective forwarding attacks is generated through the checkpoint nodes. In this scheme, the number of hops is very important because this parameter may trade off between energy conservation and detection capacity. In this paper, we used the fuzzy rule system to determine adaptive threshold value which is the number of hops for the ACK packets. In every period, the base station determines threshold value while using fuzzy logic. The energy level, the number of compromised node, and the distance to each node from base station are used to determine threshold value in fuzzy logic.

Dynamic States Consideration for Next Hop Nodes Selection Method to Improve Energy Efficiency in LEAP based Wireless Sensor Networks (LEAP기반의 무선 센서 네트워크에서 가변적 상태를 고려한 에너지 효율적 다음 홉 노드 선택 기법)

  • Nam, Su-Man;Cho, Tae-Ho
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.23 no.6
    • /
    • pp.558-564
    • /
    • 2013
  • Wireless sensor networks (WSNs) contain limited energy resources and are left in open environments. Since these sensor nodes are self-operated, attacks such as sinkhole attacks are possible as they can be compromised by an adversary. The sinkhole attack may cause to change initially constructed routing paths, and capture of significant information at the compromised node. A localized encryption and authentication protocol (LEAP) has been proposed to authenticate packets and node states by using four types of keys against the sinkhole attack. Even though this novel approach can securely transmits the packets to a base station, the packets are forwarded along the constructed paths without checking the next hop node states. In this paper, we propose the next hop node selection method to cater this problem. Our proposed method evaluates the next hop node considering three factors (i.e., remaining energy level, number of shared keys, and number of filtered false packets). When the suitability criterion for next hop node selection is satisfied against a fix threshold value, the packet is forwarded to the next hop node. We aim to enhance energy efficiency and a detour of attacked areas to be effectively selected Experimental results demonstrate validity of the proposed method with up to 6% energy saving against the sinkhole attack as compared to the LEAP.

Control Method for the number of check-point nodes in detection scheme for selective forwarding attacks (선택적 전달 공격 탐지 기법에서의 감시 노드 수 제어기법)

  • Lee, Sang-Jin;Cho, Tae-Ho
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2009.08a
    • /
    • pp.387-390
    • /
    • 2009
  • Wireless Sensor Network (WSN) can easily compromised from attackers because it has the limited resource and deployed in exposed environments. When the sensitive packets are occurred such as enemy's movement or fire alarm, attackers can selectively drop them using a compromised node. It brings the isolation between the basestation and the sensor fields. To detect selective forwarding attack, Xiao, Yu and Gao proposed checkpoint-based multi-hop acknowledgement scheme (CHEMAS). The check-point nodes are used to detect the area which generating selective forwarding attacks. However, CHEMAS has static probability of selecting check-point nodes. It cannot achieve the flexibility to coordinate between the detection ability and the energy consumption. In this paper, we propose the control method for the number fo check-point nodes. Through the control method, we can achieve the flexibility which can provide the sufficient detection ability while conserving the energy consumption.

  • PDF