DOI QR코드

DOI QR Code

Dynamic States Consideration for Next Hop Nodes Selection Method to Improve Energy Efficiency in LEAP based Wireless Sensor Networks

LEAP기반의 무선 센서 네트워크에서 가변적 상태를 고려한 에너지 효율적 다음 홉 노드 선택 기법

  • Nam, Su-Man (College of Information and Communication Engineering, Sunkyunkwan University) ;
  • Cho, Tae-Ho (College of Information and Communication Engineering, Sunkyunkwan University)
  • 남수만 (성균관대학교 정보통신대학) ;
  • 조대호 (성균관대학교 정보통신대학)
  • Received : 2013.03.31
  • Accepted : 2013.11.17
  • Published : 2013.12.25

Abstract

Wireless sensor networks (WSNs) contain limited energy resources and are left in open environments. Since these sensor nodes are self-operated, attacks such as sinkhole attacks are possible as they can be compromised by an adversary. The sinkhole attack may cause to change initially constructed routing paths, and capture of significant information at the compromised node. A localized encryption and authentication protocol (LEAP) has been proposed to authenticate packets and node states by using four types of keys against the sinkhole attack. Even though this novel approach can securely transmits the packets to a base station, the packets are forwarded along the constructed paths without checking the next hop node states. In this paper, we propose the next hop node selection method to cater this problem. Our proposed method evaluates the next hop node considering three factors (i.e., remaining energy level, number of shared keys, and number of filtered false packets). When the suitability criterion for next hop node selection is satisfied against a fix threshold value, the packet is forwarded to the next hop node. We aim to enhance energy efficiency and a detour of attacked areas to be effectively selected Experimental results demonstrate validity of the proposed method with up to 6% energy saving against the sinkhole attack as compared to the LEAP.

무선 센서 네트워크는 제한된 에너지 자원을 포함하고 개방된 환경에서 스스로 운영된다. 이러한 센서 노드들은 한 필드에서 스스로 운영되기 때문에 싱크홀 공격이 쉽게 발생되어 공격자를 통해 센서들을 훼손시킬 수 있다. 싱크홀 공격은 초기에 구성된 라우팅 경로를 변경하여 훼손된 노드에서 중요한 정보를 탈취한다. LEAP은 싱크홀 공격에 반대하여 네 개의 키를 사용하여 모든 노드의 상태와 패킷을 인증하기 위해 제안되었다. 이 기법은 베이스 스테이션까지 패킷들을 안전하게 전송함에도 불구하고, 패킷들은 다음 홉 노드 상태 확인 없이 구성된 경로를 따라 전달된다. 본 논문에서, 우리는 이 문제를 해결하기 위해 에너지 효율성을 위한 다음 홉 노드 선택 기법을 제안한다. 우리의 제안 기법은 잔여 에너지, 공유된 키의 수, 여과된 허위 패킷의 수를 간주하여 다음 홉 노드를 평가한다. 설정된 임계값에 대해서 다음 홉 노드의 적합성 기준을 만족할 때 패킷은 다음 홉 노드에 전송된다. 우리는 효과적인 노드 선택을 통해 에너지 효율성과 공격 발생 지역의 우회를 향상시키는 것을 목표로 한다. 실험 결과는 LEAP과 비교하였을 때 싱크홀 공격에 반대하여 최대 6%의 에너지 절약과 함께 제안 기법의 타당성을 보여준다.

Keywords

References

  1. I. F. Akyildiz, W. Su, Y. Sankarasubramaniam and E. Cayirci, "A survey on sensor networks," Communications Magazine, IEEE, vol. 40, pp. 102-114, Aug. 2002.
  2. K. Akkaya and M. Younis, "A survey on routing protocols for wireless sensor networks," Ad Hoc Networks, vol. 3, pp. 325-349, 2005. https://doi.org/10.1016/j.adhoc.2003.09.010
  3. X. Du and H. -. Chen, "Security in wireless sensor networks," Wireless Communications, IEEE, vol. 15, pp. 60-66, Aug. 2008.
  4. S. Zhu, S. Setia and S. Jajodia, "LEAP: efficient security mechanisms for large-scale distributed sensor networks," Proc. of the 10th ACM Conf. on Computer and Communications Security, ACM, pp. 62-72, 2003.
  5. S. Zhu, S. Setia and S. Jajodia, "LEAP+: Efficient security mechanisms for large-scale distributed sensor networks," ACM Trans.Sen.Netw., vol. 2, pp. 500-528, nov, 2006. https://doi.org/10.1145/1218556.1218559
  6. F. Ye, H. Luo, S. Lu and L. Zhang, "Statistical en-route filtering of injected false data in sensor networks," Selected Areas in Communications, IEEE Journal on, vol. 23, pp. 839-850, 2005. https://doi.org/10.1109/JSAC.2005.843561
  7. S. H. Kim, Y. S. Kang, B. H. Chung, and K. I. Chung, "Technical Trend of Security in Ubiquitous Sensor Networks," Electronics and Telecommunications Trends, vol. 20, pp. 93-99, Feb. 2005.
  8. C. H. Lim, "LEAP++: A robust key establishment scheme for wireless sensor networks," Distributed Computing Systems Workshops, 2008. ICDCS '08. 28th International Conference on, 2008, pp. 376-381.
  9. Crossbow Technology Inc., "MICAz: wireless measurement system," Available: http://bullseye.xbow.com, [Accessed: Nov. 10, 2013]
  10. C. Intanagonwiwat, R. Govindan and D. Estrin, "Directed Diffusion: A scalable and robust communication paradigm for sensor networks," Proceedings of the 6th Annual International Conference on Mobile Computing and Networking, pp. 56-67, 2000.
  11. F. Ye, A. Chen, S. Lu and L. Zhang, "A scalable solution to minimum cost forwarding in large sensor networks," in Computer Communications and Networks, 2001. Proceedings. Tenth International Conference on, 2001, pp. 304-309.
  12. J. H. Nah, K. J. Chae and C. K. I., "Research Tread for Sensor Network Security," Electronics and Telecommunications Trends, vol. 20, pp. 112-122, Feb. 2005.
  13. Wenliang Du, Jing Deng, Y. S. Han, Shigang Chen and P. K. Varshney, "A key management scheme for wireless sensor networks using deployment knowledge," in INFOCOM 2004. Twenty-Third AnnualJoint Conference of the IEEE Computer and Communications Societies, 2004, pp. 597.
  14. A. Perrig, R. Szewczyk, J. D. Tygar, V. Wen and D. E. Culler, "SPINS: security protocols for sensor networks," Wirel.Netw., vol. 8, pp. 521-534, sep, 2002. https://doi.org/10.1023/A:1016598314198
  15. S. Slijepcevic, M. Potkonjak, V. Tsiatsis, S. Zimbeck and M. B. Srivastava, "On communication security in wireless ad-hoc sensor networks," in Enabling Technologies: Infrastructure for Collaborative Enterprises, 2002. WET ICE 2002. Proceedings. Eleventh IEEE International Workshops on, 2002, pp. 139-144.

Cited by

  1. Key Re-distribution Scheme of Dynamic Filtering Utilizing Attack Information for Improving Energy Efficiency in WSNs vol.26, pp.2, 2016, https://doi.org/10.5391/JKIIS.2016.26.2.113
  2. Secure route determination method to prevent sinkhole attacks in INSENS based wireless sensor networks vol.26, pp.4, 2016, https://doi.org/10.5391/JKIIS.2016.26.4.267