• Title/Summary/Keyword: composite truss

Search Result 142, Processing Time 0.025 seconds

The Composite Effects of Composite Truss using High Strength T-shaped Steel (고강도 T형강을 사용한 합성트러스의 합성효과)

  • Chae, Dae Jin;Lee, Myung Jae
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.6
    • /
    • pp.637-645
    • /
    • 2012
  • The composite action in truss beam is generally achieved by providing shear connectors between the steel top chord of the truss and the concrete slab. The composite sections have greater stiffness than the sum of the individual stinesses of the slab and truss. Therefore, steel trusses that act compositely with concrete slabs can carry larger load and are stiffer and less prone to transient vibration. The crack pattern and deflection of the beam of the composte truss were investigated by using of 600MPa class steel in this study. The test results were compared with the results for the noncomposite trusses. Test results were also compared with the results of composite trusses by using of 400MPa class steel. It was ascertained that the case of high strength steel is more efficient compared with the case of SS400 steel for T-shaped steel.

Evaluation of the Joint Design in Composite Truss Bridges (복부 트러스 복합교량 접합구조의 실험적 연구)

  • Shim, Chang-Su;Park, Jae-Sik;Kim, Kwang-Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.325-328
    • /
    • 2006
  • Joint structures of composite truss bridges can have the same details for the connection between diagonal members and upper concrete slab as the connection between diagonal members and lower concrete slab. Adequate connection details should be decided according to design codes, constructibility, and economical evaluation. It is necessary to clarify the design check items and load transferring mechanism because combined external loads on composite truss bridges are concentrated at the joints. Joints with gusset plates and stud connectors are applied and complicated joint details may arise some problems in construction. This paper deals with experimental evaluation of the joints in composite truss bridges and proper design provisions were investigated to enhance the details. Push-out test specimens with group studs were fabricated and the effects of grouping and bent studs were studied.

  • PDF

Eccentric compressive behavior of novel composite walls with T-section

  • Qin, Ying;Chen, Xin;Xi, Wang;Zhu, Xingyu;Chen, Yuanze
    • Steel and Composite Structures
    • /
    • v.35 no.4
    • /
    • pp.495-508
    • /
    • 2020
  • Double skin composite walls are alternatives to concrete walls to resist gravity load in structures. The composite action between steel faceplates and concrete core largely depends on the internal mechanical connectors. This paper investigates the structural behavior of novel composite wall system with T section and under combined compressive force and bending moment. The truss connectors are used to bond the steel faceplates to concrete core. Four short specimens were designed and tested under eccentric compression. The influences of the thickness of steel faceplates, the truss spacing, and the thickness of web wall were discussed based on the test results. The N-M interaction curves by AISC 360, Eurocode 4, and CECS 159 were compared with the test data. It was found that AISC 360 provided the most reasonable predictions.

Compressive behavior of rectangular sandwich composite wall with different truss spacings

  • Qin, Ying;Chen, Xin;Xi, Wang;Zhu, Xing-Yu;Chen, Yuan-Ze
    • Steel and Composite Structures
    • /
    • v.34 no.6
    • /
    • pp.783-794
    • /
    • 2020
  • Steel-concrete-steel sandwich composite wall is composed of two external steel plates and infilled concrete core. Internal mechanical connectors are used to enhance the composite action between the two materials. In this paper, the compressive behavior of a novel sandwich composite wall was studied. The steel trusses were applied to connect the steel plates to the concrete core. Three short specimens with different truss spacings were tested under compressive loading. The boundary columns were not included. It was found that the failure of walls started from the buckling of steel plates and followed by the crushing of concrete. Global instability was not observed. It was also observed that the truss spacing has great influence on ultimate strength, buckling stress, ductility, strength index, lateral deflection, and strain distribution. Three modern codes were introduced to calculate the capacity of walls. The comparisons between test results and code predictions show that AISC 360 provides significant underestimations while Eurocode 4 and CECS 159 offer overestimated predictions.

Height-thickness ratio on axial behavior of composite wall with truss connector

  • Qin, Ying;Shu, Gan-Ping;Zhou, Xiong-Liang;Han, Jian-Hong;He, Yun-Fei
    • Steel and Composite Structures
    • /
    • v.30 no.4
    • /
    • pp.315-325
    • /
    • 2019
  • Double skin composite walls offer structural and economic merits over conventional reinforced concrete counterparts in terms of higher capacity, greater stiffness, and better ductility. This paper investigated the axial behavior of double skin composite walls with steel truss connectors. Full-scaled tests were conducted on three specimens with different height-to-thickness ratios. Test results were evaluated in terms of failure mode, load-axial displacement response, buckling loading, axial stiffness, ductility, strength index, load-lateral deflection, and strain distribution. The test data were compared with AISC 360 and Eurocode 4 and it was found that both codes provided conservative predictions on the safe side.

Equivalent moment of inertia of a truss bridge with steel-concrete composite deck

  • Siekierski, Wojciech
    • Structural Engineering and Mechanics
    • /
    • v.55 no.4
    • /
    • pp.801-813
    • /
    • 2015
  • Flexural stiffness of bridge spans has become even more important parameter since Eurocode 1 introduced for railway bridges the serviceability limit state of resonance. For simply supported bridge spans it relies, in general, on accurate assessment of span moment of inertia that governs span flexural stiffness. The paper presents three methods of estimation of the equivalent moment of inertia for such spans: experimental, analytical and numerical. Test loading of the twin truss bridge spans and test results are presented. Recorded displacements and the method of least squares are used to find an "experimental" moment of inertia. Then it is computed according to the analytical method that accounts for joint action of truss girders and composite deck as well as limited span shear stiffness provided by diagonal bracing. Finally a 3D model of finite element method is created to assess the moment of inertia. Discussion of results is given. The comparative analysis proves efficiency of the analytical method.

An Experimental Study on In-Plane Shear Strength of the Interface between Half PC Plate and Cast-in-Place Concrete Plate (하프 PC판과 후타설콘크리트 접합면의 면내전단강도에 관한 실험적 연구)

  • 신동원;고만영;이동우;김용부
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10a
    • /
    • pp.513-518
    • /
    • 1998
  • In Half Precast Concrete Method, such as composite slab and composite wall, Interface between half PC plate and cast-in-place concrete is occurred. And this interface endure lastly in-plane shear which is occurred by external force. Therefore, test was executed to study in-plane shear strength of interface between half PC plate and cast-in-place concrete. In this test, Experimental parameters are finishing condition of the interface, cohesion of concrete, existence and nonexistence of re-bar truss, and angle and direction of lattice of re-bar truss. Comparing and analyzing experimental results, conclusions are obtained as follows. (1) In-plane shear strength of wide interface in composite plate is more affected by the roughness of interface than re-bar truss. And cohesion of concrete contribute to increasing in-plane shear strength. Therefore it seems that the interface should be roughen and kept clean to improve in-plane shear strength. (2) It seems that shear friction equation in ACI code can be sagely available for design of in-plane shear of composite plate.

  • PDF

Theoretical and experimental study on deflection of steel-concrete composite truss beams

  • Wang, Junli;Li, Tian;Luo, Lisheng
    • Steel and Composite Structures
    • /
    • v.29 no.1
    • /
    • pp.91-106
    • /
    • 2018
  • This paper investigates the deflection of the steel-concrete composite truss beam (SCCTB) at the serviceability limit state. A precise solution for the distributed uplift force of the SCCTB, considering five different loading types, is first derived based on the differential and equilibrium equations. Furthermore, its approximate solution is proposed for practical applications. Subsequently, the shear slip effect corresponding to the shear stiffness of the stub connectors, uplift effect corresponding to the axial stiffness of the stub connectors and shear effect corresponding to the brace deformation of the steel truss are considered in the derivation of deflection. Formulae for estimating the SCCTB deflection are proposed. Moreover, based on the proposed formulae, a practical design method is developed to provide an effective and convenient tool for designers to estimate the SCCTB deflection. Flexure tests are carried out on three SCCTBs. It is observed that the SCCTB stiffness and ultimate load increase with an increase in the shear interaction factor. Finally, the reliability of the practical design method is accurately verified based on the available experimental results.

Cracking of a prefabricated steel truss-concrete composite beam with pre-embedded shear studs under hogging moment

  • Gao, Yanmei;Zhou, Zhixiang;Liu, Dong;Wang, Yinhui
    • Steel and Composite Structures
    • /
    • v.21 no.5
    • /
    • pp.981-997
    • /
    • 2016
  • To avoid the cracks of cast-in-place concrete in shear pockets and seams in the traditional composite beam with precast decks, this paper proposed a new type of prefabricated steel truss-concrete composite beam (ab. PSTC beam) with pre-embedded shear studs (ab. PSS connector). To study the initial cracking load of concrete deck, the development and distribution laws of the cracks, 3 PSTC beams were tested under hogging moment. And the crack behavior of the deck was compared with traditional precast composite beam, which was assembled by shear pockets and cast-in-place joints. Results show that: (i) the initial crack appears on the deck, thus avoid the appearance of the cracks in the traditional shear pockets; (ii) the crack of the seam appears later than that of the deck, which verifies the reliability of epoxy cement mortar seam, thus solves the complex structure and easily crack behavior of the traditional cast-in-place joints; (iii) the development and the distribution laws of the cracks in PSTC beam are different from the conventional composite beam. Therefore, in the deduction of crack calculation theory, all the above factors should be considered.

Structural behavior of sandwich composite wall with truss connectors under compression

  • Qin, Ying;Chen, Xin;Zhu, Xingyu;Xi, Wang;Chen, Yuanze
    • Steel and Composite Structures
    • /
    • v.35 no.2
    • /
    • pp.159-169
    • /
    • 2020
  • Sandwich composite wall consists of concrete core attached by two external steel faceplates. It combines the advantage of steel and concrete. The appropriate composite action between steel faceplate and concrete core is achieved by using adequate mechanical connectors. This research studied the compressive behavior of the sandwich composite walls using steel trusses to bond the steel faceplates to concrete infill. Four short specimens with different wall width and thickness of steel faceplate were designed and tested under axial compression. The test results were comprehensively evaluated in terms of failure modes, load versus axial and lateral deformation responses, resistance, stiffness, ductility, strength index, and strain distribution. The test results showed that all specimens exhibited high resistance and good ductility. Truss connectors offer better restraint to walls with thinner faceplates and smaller wall width. In addition, increasing faceplate thickness is more effective in improving the ultimate resistance and axial stiffness of the wall.