Browse > Article
http://dx.doi.org/10.12989/scs.2020.35.4.495

Eccentric compressive behavior of novel composite walls with T-section  

Qin, Ying (Key Laboratory of Concrete and Prestressed Concrete Structures of Ministry of Education, Southeast University)
Chen, Xin (School of Civil Engineering, Southeast University)
Xi, Wang (School of Civil Engineering, Southeast University)
Zhu, Xingyu (School of Civil Engineering, Southeast University)
Chen, Yuanze (School of Civil Engineering, Southeast University)
Publication Information
Steel and Composite Structures / v.35, no.4, 2020 , pp. 495-508 More about this Journal
Abstract
Double skin composite walls are alternatives to concrete walls to resist gravity load in structures. The composite action between steel faceplates and concrete core largely depends on the internal mechanical connectors. This paper investigates the structural behavior of novel composite wall system with T section and under combined compressive force and bending moment. The truss connectors are used to bond the steel faceplates to concrete core. Four short specimens were designed and tested under eccentric compression. The influences of the thickness of steel faceplates, the truss spacing, and the thickness of web wall were discussed based on the test results. The N-M interaction curves by AISC 360, Eurocode 4, and CECS 159 were compared with the test data. It was found that AISC 360 provided the most reasonable predictions.
Keywords
composite wall; eccentric compressive loading; experimental behavior; T-shaped section; truss connector;
Citations & Related Records
Times Cited By KSCI : 22  (Citation Analysis)
연도 인용수 순위
1 Nie, J.G., Hu, H.S., Fan, J.S., Tao, M.X., Li, S.Y. and Liu, F.J. (2013), "Experimental study on seismic behavior of high-strength concrete filled double-steel-plate composite walls", J. Constr. Steel Res., 88, 206-219. http://dx.doi.org/10.1016/j.jcsr.2013.05.001.   DOI
2 Prabha, P., Marimuthu, V., Saravanan, M., Palani, G.S., Lakshmanan, N. and Senthil, R. (2013), "Effect of confinement on steel-concrete composite light-weight load-bearing wall panels under compression", J. Constr. Steel Res., 81, 11-19. http://dx.doi.org/10.1016/j.jcsr.2012.10.008.   DOI
3 Qin, Y., Shu, G.P., Du, E.F. and Lu, R.H. (2018), "Buckling analysis of elastically-restrained steel plates under eccentric compression", Steel Compos. Struct., 29(3), 379-389. https://doi.org/10.12989/scs.2018.29.3.379.   DOI
4 Beiraghi, H. (2018), "Energy demands in reinforced concrete wall piers coupled by buckling restrained braces subjected to nearfault earthquake", Steel Compos. Struct., 27(6), 703-716. http://dx.doi.org/10.12989/scs.2018.27.6.703.   DOI
5 Bruhl, J.C. and Varma, A.H. (2018), "Experimental evaluation of steel-plate composite walls subject to blast loads", J. Struct. Eng., 144(9), 04018155. http://dx.doi.org/10.1061/(ASCE)ST.1943-541X.0002163.   DOI
6 CECS 159:2004 (2004), Technical specification for structures with concrete-filled rectangular steel tube members, China Association for Engineering Construction Standardization; Beijing, China.
7 Chen, L., Mahmoud, H., Tong, S.M. and Zhou, Y. (2015), "Seismic behavior of double steel plate-HSC composite walls", Eng. Struct., 102, 1-12. http://dx.doi.org/10.1016/j.engstruct.2015.08.017.   DOI
8 Chen, L.H., Wang, S.Y., Lou, Y. and Xia, D.R. (2019), "Seismic behavior of double-skin composite wall with L-shaped and Cshaped connectors", J. Constr. Steel Res., 160, 255-270. http://dx.doi.org/10.1016/j.jcsr.2019.05.033.   DOI
9 Curkovic, I., Skejic, D. and Dzeba, I. (2019), "Seismic performance of steel plate shear walls with variable column flexural stiffness", Steel Compos. Struct., 33(1), 833-850. http://dx.doi.org/10.12989/scs.2019.33.1.833.
10 Deng, E.F., Zong, L. and Ding, Y. (2019), "Numerical and analytical study on initial stiffness of corrugated steel plate shear walls in modular construction", Steel Compos. Struct., 32(3), 347-359. http://dx.doi.org/10.12989/scs.2019.32.3.347.   DOI
11 EN 1994-1-1:2004 (2004), Eurocode 4: Design of composite steel and concrete structures-Part 1-1: General rules and rules for buildings. British Standards Institution; London, UK.
12 Eom, T.S., Park, H.G., Lee, C.H., Kim, J.H. and Chang, I.H. (2009), "Behavior of double skin composite wall subjected to in-plane cyclic loading", J. Struct. Eng., 135(10), 1239-1249. http://dx.doi.org/10.1061/(ASCE)ST.1943-541X.0000057.   DOI
13 GB 50010-2010 (2015), Code for design of concrete structures, China Architecture & Building Press, Beijing, China.
14 GB/T 2975-2018 (2018), Steel and Steel Products-Location and Preparation of Samples and Test Pieces for Mechanical Testing, China Standards Press, Beijing, China.
15 AISC 360-16 (2016), Specification for structural steel buildings, American Institute of Steel Construction; Chicago, USA.
16 Bafti, F.G., Mortezaei, A. and Kheyroddin, A. (2019), "The length of plastic hinge area in the flanged reinforced concrete shear walls subjected to earthquake ground motions", Struct. Eng. Mech., 69(6), 651-665. https://doi.org/10.12989/sem.2019.69.6.651.   DOI
17 GB/T 50081-2019 (2019), Standard for test methods of concrete physical and mechanical properties, China Architecture & Building Press, Beijing, China.
18 Huang, Z. and Liew, J.Y.R. (2016), "Compressive resistance of steel-concrete-steel sandwich composite walls with J-hook connectors", J. Constr. Steel Res., 124, 142-162. http://dx.doi.org/10.1016/j.jcsr.2016.05.001.   DOI
19 Hu, H.S., Nie, J.G. and Eatherton, M.R. (2014), "Deformation capacity of concrete-filled steel plate composite shear walls", J. Constr. Steel Res., 103, 148-158. http://dx.doi.org/10.1016/j.jcsr.2014.08.006.   DOI
20 Huang, S.T., Huang, Y.S., He, A., Tang, X.L, Chen, Q.J., Liu, X. and Cai, J. (2018), "Experimental study on seismic behaviour of an innovative composite shear wall", J. Constr. Steel Res., 148, 165-179. https://doi.org/10.1016/j.jcsr.2018.05.003.   DOI
21 Ji, X.D., Cheng, X.W., Jia, X.F. and Varma, A.H. (2017), "Cyclic in-plane shear behavior of double-skin composite walls in high-rise buildings", J. Struct. Eng., 143(6), 04017025. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001749.   DOI
22 Keihani, R., Bahadori-Jahromi, A. and Goodchild, C. (2019), "The significance of removing shear walls in existing low-rise RC frame buildings - Sustainable approach", Struct. Eng. Mech., 71(5), 563-576. https://doi.org/10.12989/sem.2019.71.5.563.   DOI
23 Liu, W.Y., Li, G.Q. and Jiang, J. (2018), "Capacity design of boundary elements of beam-connected buckling restrained steel plate shear wall", Steel Compos. Struct., 29(2), 231-242. https://doi.org/10.12989/scs.2018.29.2.231.   DOI
24 Shariati, M., Faegh, S.S., Mehrabi, P., Bahavarnia, S., Zandi, Y., Masoom, D.R., Toghroli, A., Trung, N.T. and Salih, M.N.A. (2019), "Numerical study on the structural performance of corrugated low yield point steel plate shear walls with circular openings", Steel Compos. Struct., 33(4), 569-581. http://dx.doi.org/10.12989/scs.2019.33.4.569.   DOI
25 Ma, K., Ma, Y. and Liu, B. (2019), "Seismic behavior of double steel concrete composite walls", Struct. Design Tall Spec. Build., 28, e1623. https://doi.org/10.1002/tal.1623.   DOI
26 Nguyen, N.H. and Whittaker, A.S. (2017), "Numerical modelling of steel-plate concrete composite shear walls", Eng. Struct., 150, 1-11. http://dx.doi.org/10.1016/j.engstruct.2017.06.030.   DOI
27 Qin, Y., Shu, G.P., Zhou, G.G. and Han, J.H. (2019), "Compressive behavior of double skin composite wall with different plate thicknesses", J. Constr. Steel Res., 157, 297-313. https://doi.org/10.1016/j.jcsr.2019.02.023.   DOI
28 Qin, Y., Shu, G.P., Zhou, X.L., Han, J.H. and Zhang, H.K. (2020), "Behavior of T-shaped sandwich composite walls with truss connectors under eccentric compression", J. Constr. Steel Res., 169, 106067. https://doi.org/10.1016/j.jcsr.2020.106067.   DOI
29 Seddighi, M., Barkhordari, M.A. and Hosseinzadeh, S.A.A. (2019), "Behavior of FRP-reinforced steel plate shear walls with various reinforcement designs", Steel Compos. Struct., 33(5), 729-746. http://dx.doi.org/10.12989/scs.2019.33.5.729.   DOI
30 Sener, K.C., Varma, A.H., and Ayhan, D. (2015), "Steel-plate composite (SC) walls: Out-of-plane flexural behavior, database, and design", J. Constr. Steel Res., 108, 46-59. http://dx.doi.org/10.1016/j.jcsr.2015.02.002.   DOI
31 Wei, F., Zheng, Z., Yu, J. and Wang, Y. (2019), "Structure behavior of concrete filled double-steel-plate composite walls under fire", Adv. Struct. Eng., 22(8), 1895-1908. https://doi.org/10.1177/1369433218825238.   DOI
32 Yang, Y., Liu, J.B. and Fan, J.S. (2016), "Buckling behavior of double-skin composite walls: An experimental and modeling study", J. Constr. Steel Res., 121, 126-135. http://dx.doi.org/10.1016/j.jcsr.2016.01.019.   DOI
33 Xiong, Q., Chen, Z., Zhang, W., Du, Y., Zhou, T. and Kang, J. (2017), "Compressive behaviour and design of L-shaped columns fabricated using concrete-filled steel tubes", Eng. Struct., 152, 758-770. https://doi.org/10.1016/j.engstruct.2017.09.046.   DOI
34 Yan, J.B., Wang, Z., Wang, T. and Wang, X.T. (2018), "Shear and tensile behaviors of headed stud connectors in double skin composite shear wall", Steel Compos. Struct., 26(6), 759-769. https://doi.org/10.12989/scs.2013.91.4.1301.   DOI
35 Yan, J.B., Chen, A.Z. and Wang, T. (2019), "Developments of double skin composite walls using novel enhanced C-channel connectors", Steel Compos. Struct., 33(6), 877-889. https://doi.org/10.12989/scs.2019.33.6.877.   DOI
36 Hossain, K.M.A., Mol, L.K. and Anwar, M.S. (2015), "Axial load behaviour of pierced profiled composite walls with strength enhancement devices", J. Constr. Steel Res., 110, 48-64. http://dx.doi.org/10.1016/j.jcsr.2015.03.009.   DOI
37 Yuksel, S.B. (2019), "Experimental investigation of retrofitted shear walls reinforced with welded wire mesh fabric", Struct. Eng. Mech., 70(2), 133-141. https://doi.org/10.12989/sem.2019.70.2.133.   DOI
38 Zhang, K., Varma, A.H., Malushte, S.R. and Gallocher, S. (2014), "Effect of shear connectors on local buckling and composite action in steel concrete composite walls", Nucl. Eng. Des., 269, 231-239. http://dx.doi.org/10.1016/j.nucengdes.2013.08.035.   DOI
39 Hilo, S.J., Badaruzzaman, W.H.W, Osman, S.A. and Al-Zand, A.W. (2016), "Structural behavior of composite wall systems strengthened with embedded cold-formed steel tube", Thin Wall. Struct., 98, 607-616. http://dx.doi.org/10.1016/j.tws.2015.10.028.   DOI