Browse > Article
http://dx.doi.org/10.12989/scs.2020.34.6.783

Compressive behavior of rectangular sandwich composite wall with different truss spacings  

Qin, Ying (Key Laboratory of Concrete and Prestressed Concrete Structures of Ministry of Education, School of Civil Engineering, Southeast University)
Chen, Xin (Key Laboratory of Concrete and Prestressed Concrete Structures of Ministry of Education, School of Civil Engineering, Southeast University)
Xi, Wang (Key Laboratory of Concrete and Prestressed Concrete Structures of Ministry of Education, School of Civil Engineering, Southeast University)
Zhu, Xing-Yu (Key Laboratory of Concrete and Prestressed Concrete Structures of Ministry of Education, School of Civil Engineering, Southeast University)
Chen, Yuan-Ze (Key Laboratory of Concrete and Prestressed Concrete Structures of Ministry of Education, School of Civil Engineering, Southeast University)
Publication Information
Steel and Composite Structures / v.34, no.6, 2020 , pp. 783-794 More about this Journal
Abstract
Steel-concrete-steel sandwich composite wall is composed of two external steel plates and infilled concrete core. Internal mechanical connectors are used to enhance the composite action between the two materials. In this paper, the compressive behavior of a novel sandwich composite wall was studied. The steel trusses were applied to connect the steel plates to the concrete core. Three short specimens with different truss spacings were tested under compressive loading. The boundary columns were not included. It was found that the failure of walls started from the buckling of steel plates and followed by the crushing of concrete. Global instability was not observed. It was also observed that the truss spacing has great influence on ultimate strength, buckling stress, ductility, strength index, lateral deflection, and strain distribution. Three modern codes were introduced to calculate the capacity of walls. The comparisons between test results and code predictions show that AISC 360 provides significant underestimations while Eurocode 4 and CECS 159 offer overestimated predictions.
Keywords
truss spacing; sandwich composite wall; compressive behavior; strength;
Citations & Related Records
Times Cited By KSCI : 11  (Citation Analysis)
연도 인용수 순위
1 EN 1994-1-1 (2004), Eurocode 4: Design of composite steel and concrete structures-Part 1-1: General rules and rules for buildings, European Standard Institute, Brusels, Belgium.
2 Eom, T.S., Park, H.G., Lee, C.H., Kim, J.H. and Chang, I.H. (2009), "Behavior of double skin composite wall subjected to in-plane cyclic loading", J. Struct. Eng., 135(10), 1239-1249. http://dx.doi.org/10.1061/(ASCE)ST.1943-541X.0000057.   DOI
3 GB50010-2010 (2010), Code for design of concrete structures; China Architecture & Building Press, Beijing, China.
4 GB50017-2017 (2017), Standard for classification of steel structures; China Architecture & Building Press, Beijing, China.
5 Hariri-Ardebili, M.A., Rahmani-Samani, H. and Mirtaheri, M. (2014), "Seismic stability assessment of a high-rise concrete tower utilizing endurance time analysis", Int. J. Struct. Stab. Dyn., 14(6), 1450016. http://dx.doi.org/10.1142/S0219455414500163.   DOI
6 Hilo, S.J., Badaruzzaman, W.H.W., Osman, S.A. and Al-Zand, A.W. (2016), "Structural behavior of composite wall systems strengthened with embedded cold-formed steel tube", Thin Wall. Struct., 98, 607-616. http://dx.doi.org/10.1016/j.tws.2015.10.028.   DOI
7 Huang, S.T., Huang, Y.S., He, A., Tang, X.L, Chen, Q.J., Liu, X. and Cai, J. (2018), "Experimental study on seismic behaviour of an innovative composite shear wall", J. Constr. Steel Res., 148, 165-179. https://doi.org/10.1016/j.jcsr.2018.05.003.   DOI
8 Huang, Z.Y. and Liew, J.Y.R. (2016), "Compressive resistance of steel-concrete-steel sandwich composite walls with J-hook connectors", J. Constr. Steel Res., 124, 142-162. http://dx.doi.org/10.1016/j.jcsr.2016.05.001.   DOI
9 Kanchi, M. (1996), "Experimental study on a concrete filled steel structure Part 2 Compressive tests (1). Summary of Technical Papers of Annual Meeting", Architectural Institute of Japan, 1996, 1071-1072.
10 Yang, Y., Liu, J.B. and Fan, J.S. (2016), "Buckling behavior of double-skin composite walls: An experimental and modeling study", J. Constr. Steel Res., 121, 126-135. http://dx.doi.org/10.1016/j.jcsr.2016.01.019.   DOI
11 JGJ/T 380-2015 (2015), Technical specification for steel plate shear walls, China Architecture & Building Press, Beijing, China.
12 Nie, J.G., Hu, H.S., Fan, J.S., Tao, M.X., Li, S.Y. and Liu, F.J. (2013), "Experimental study on seismic behavior of highstrength concrete filled double-steel-plate composite walls", J. Constr. Steel Res., 88, 206-219. http://dx.doi.org/10.1016/j.jcsr.2013.05.001.   DOI
13 AISC 360-16 (2016), Specification for structural steel buildings, American Institute of Steel Construction, Chicago, USA.
14 Liang, Q.Q., Uy, B., Wright, H.D. and Bradford, M.A. (2003), "Local and post-local buckling of double skin composite panels", Proc. Inst. Civil Eng.-Struct. Build., 156(2), 111-119.   DOI
15 Liang, Q.Q., Uy, B., Wright, H.D. and Bradford, M.A. (2004), "Local buckling of steel plates in double skin composite panels under biaxial compression and shear", J. Struct. Eng.- ASCE, 130 (3), 443-451. http://dx.doi.org/10.1061/(ASCE)0733-9445(2004)130:3(443).   DOI
16 Luo, Y.F., Guo, X.N., Li, J., Xiong, Z., Meng, L., Dong, N. and Zhang, J. (2015), "Experimental research on seismic behaviour of the concrete-filled double-steel-plate composite wall", Adv. Struct. Eng., 18(11), 1845-1858. http://dx.doi.org/10.1260/1369-4332.18.11.1845.   DOI
17 Massumi, A., Karimi, N. and Ahmadi, M. (2018), "Effects of openings geometry and relative area on seismic performance of steel shear walls", Steel Compos. Struct., 28(5), 617-628. http://dx.doi.org/10.12989/scs.2018.28.5.617.   DOI
18 Mirtaheri, S.M., Zandi, A.P., Mavandadi, S., Daryan, A.S. and Ziaei, M. (2012), "Study the possibility of seismic collision between adjacent structures: a case study of Karimkhan avenue in Tehran", Des. Tall Spec. Build., 21(3), 194-214. http://dx.doi.org/10.1002/tal.587.   DOI
19 Mydin, M.A.O. and Wang, Y.C. (2011), "Structural performance of lightweight steel-foamed concrete-steel composite walling system under compression", Thin Wall. Struct., 49, 66-76. http://dx.doi.org/10.1016/j.tws.2010.08.007.   DOI
20 Prabha, P., Marimuthu, V., Saravanan, M., Palani, G.S., Lakshmanan, N. and Senthil, R. (2013), "Effect of confinement on steel-concrete composite light-weight load-bearing wall panels under compression", J. Constr. Steel Res., 81, 11-19. http://dx.doi.org/10.1016/j.jcsr.2012.10.008.   DOI
21 CECS 159 (2004), Technical specification for structures with concrete-filled rectangular steel tube members; China Association for Engineering Construction Standardization, Beijing, China.
22 Akiyama, H. and Sekimoto, H. (1991), "A compression and shear loading tests of concrete filled steel bearing wall", Transaction of 11th Structural Mechanics in Reactor Technology (SMiRT-11), Tokyo, Japan, August.
23 Asgarian, B., Khazaee, H. and Mirtaheri, M. (2012), "Performance evaluation of different types of steel moment resisting frames subjected to strong ground motion through Incremental dynamic analysis", Int. J. Steel Struct., 12(3), 363-379. http://dx.doi.org/10.1007/s13296-012-3006-6.   DOI
24 Bruhl J.C. and Varma, A.H. (2017), "Experimental resistance and available ductility of steel-plate composite walls in one-way bending", J. Struct. Eng., 143(4), 04016222. http://dx.doi.org/10.1061/(ASCE)ST.1943-541X.0001714.   DOI
25 Choi, B.J., Kang, C.K. and Park, H.Y. (2014), "Strength and behavior of steel plate-concrete wall structures using ordinary and eco-oriented cement concrete under axial compression", Thin Wall. Struct., 84, 313-324. http://dx.doi.org/10.1016/j.tws.2014.07.008.   DOI
26 Chao, S., Wu, H., Zhou, T., Guo, T. and Wang, C. (2019), "Application of self-centering wall panel with replaceable energy dissipation devices in steel frames", Steel Compos. Struct., 32(2), 265-279. http://dx.doi.org/10.12989/scs.2019.32.2.265.   DOI
27 Chen, L., Mahmoud, H., Tong, S.M. and Zhou, Y. (2015), "Seismic behavior of double steel plate-HSC composite walls", Eng. Struct., 102, 1-12. http://dx.doi.org/10.1016/j.engstruct.2015.08.017.   DOI
28 Choi, B.J. and Han, H.S. (2009), "An experiment on compressive profile of the unstiffened steel plate-concrete structures under compression loading", Steel Comp. Struct., 9(6), 519-534. https://doi.org/10.12989/scs.2009.9.6.519.   DOI
29 Qin, Y., Shu, G.P., Zhou, G.G., Han, J.H. and Zhou, X.L. (2019), "Truss spacing on innovative composite walls under compression", J. Constr. Steel Res., 160, 1-15. https://doi.org/10.1016/j.jcsr.2019.05.027.   DOI
30 Qin, Y., Shu, G.P., Fan, S.G., Lu, J.Y., Cao, S. and Han, J.H. (2017), "Strength of double skin steel-concrete composite walls", Int. J. Steel Struct., 17(2), 535-541. http://dx.doi.org/10.1007/s13296-017-6013-9.   DOI
31 Sakr, M.A., El-Khoriby, S.R., Khalifa, T.M. and Nagib, M.T. (2017), "Modeling of RC shear walls strengthened by FRP composites", Struct. Eng. Mech., 61(3), 407-417. https://doi.org/10.12989/sem.2017.61.3.407.   DOI
32 Shahab, S., Mirtaheri, M., Mirzaeifar, R. and Bahai, H. (2011), "Modifying the shear buckling loads of metal shear walls for improving their energy absorption capacity", Adv. Struct. Eng., 14(6), 1247-1257. https://doi.org/10.1260/1369-4332.14.6.1247.   DOI
33 Usami, S., Akiyama, H., Narikawa, M., Hara, K., Takeuchi, M. and Sasaki, N. (1995), "Study on a concrete filled steel structure for nuclear plants (part 2). Compressive loading tests on wall members", Transaction of 13th Structural Mechanics in Reactor Technology (SMiRT-13), Porto Alegre, Brazil, August.
34 Wright, H. (1998), "The axial load behaviour of composite walling", J. Constr. Steel Res., 45(3), 353-375. https://doi.org/10.1016/S0143-974X(97)00030-8.   DOI
35 Yan, J.B., Wang, Z., Wang, T. and Wang, X.T. (2018), "Shear and tensile behaviors of headed stud connectors in double skin composite shear wall", Steel Compos. Struct., 26(6), 759-769. https://doi.org/10.12989/scs.2013.91.4.1301.   DOI
36 Yan, J.B., Chen, A.Z. and Wang, T. (2019), "Developments of double skin composite walls using novel enhanced C-channel connectors", Steel Compos. Struct., 33(6), 877-889. https://doi.org/10.12989/scs.2019.33.6.877.   DOI