• Title/Summary/Keyword: composite thin-walled beam

Search Result 93, Processing Time 0.023 seconds

A Study on the Aileron Reversal Characteristics of CAS Composite Aircraft Wings (CAS 복합재료 항공기 날개의 에일러론 역전 특성 연구)

  • Song, Oh-Seop;Kim, Keun-Taek
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.12
    • /
    • pp.1192-1200
    • /
    • 2009
  • This paper deals with an analytical study on the aileron reversal characteristics of anisotropic composite aircraft wings modelled as thin-walled beam and having bending-torsion structural couplings caused by Circumferentially Asymmetric Stiffness layup scheme. For a study on the aileron reversal of CAS composite wings, it is essential to consider the following effects such as warping restraint, transverse shear flexibility, bending-twist structural coupling, wing aspect ratio, ratio of span-wise and chord-wise length of aileron to wing, and sweep angle, etc. The results on the aileron reversal could have a significant role in more efficient designs of thin-walled composite wing aircraft for which this aeroelastic instability is one of the most critical ones.

Thermal Flutter Analysis of Spacecraft Solar Array Structure (위성체 태양전지판 구조물의 열적 플러터 해석)

  • Yoon, Il-Soung;Kang, Ho-Shik;Jeong, Nam-Heui;Song, Oh-Seop
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.7
    • /
    • pp.26-32
    • /
    • 2005
  • In this paper, the vibration response of the spacecraft solar array is investigated. The solar array model consists of composite thin walled beam and solar blanket, spreader bar. The composite thin walled beam incorporates a number of nonclassical effects of transverse shear, primary and secondary warping, rotary inertia and anisotropy of constituent materials. The solar blanket is a membrane subjected to uniform tension in the z direction. The spreader bar is a rigid member. A coupled thermal structure analysis that includes the effects of structural deformations on heating and temperature gradient is investigated. A stability criterion given in parameters for establishes the conditions for thermal flutter.

Cross-sectional Constants of Thin-walled Composite Blades with Elliptical Profiles (타원형 단면형상을 갖는 복합재료 박판 블레이드의 단면상수 계산)

  • 박일주;이주영;정성남;신의섭
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.04a
    • /
    • pp.95-98
    • /
    • 2003
  • In this work, a closed-form analysis is performed to obtain the stiffness coefficients of thin-walled composites beams with elliptical profiles. The analytical model includes the effects of elastic couplings, shell wall thickness, torsion warping and constrained warping. Reissner's semi-complementary energy functional is used to derive the beam force-displacement relations. The theory is validated against MSC/NASTRAN results for coupled composites beams with single-cell elliptical sections. Very good correlation has been noticed for the test cases considered.

  • PDF

Dynamic Response Analysis of Composite H-type Cross-section Beams (복합재료 H-형 단면 보의 동적응답 해석)

  • Kim, Sung-Kyun;Song, Oh-Seop
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.6
    • /
    • pp.583-592
    • /
    • 2010
  • Equations of motion of thin-walled composite H-type cross-section beams exposed to concentrated harmonic and non-harmonic time-dependent external excitations, incorporating a number of nonclassical effects of transverse shear, primary and secondary warping, and anisotropy of constituent materials are derived. The forced vibration response characteristics of a composite H-type cross-section beam exhibiting the circumferentially asymmetric stiffness(CAS) configuration are exploited in connection with the structural bending-torsion coupling resulting from directional properties of fiber reinforced composite materials.

Papers : Thermally Induced Vibration Analysis of Flexible Spacecraft Appendages (논문 : 위성체 유연 구조물의 열진동 해석)

  • Yun,Il-Seong;Song,O-Seop
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.1
    • /
    • pp.56-64
    • /
    • 2002
  • Thermally induced vibration response of composite thin-walled beams is investigated in this paper. The flexible spacecraft appendages modeled as thin-walled beam incorporates a number of nonclassical effects of transverse shear, primary and secondary warping, rotary inertia and anisotropy of constitute materials. Thermally induced vibration responds characteristics of a composite thin walled beam exhibiting the circumferantially uniform system(CUS) configuration are exploited in connection with the structural flapwise bending lagwise bending coupling resulting from directioal properties of fiber reinforced composite materials and ply stacking sequence. A coupled thermal structure gradient is investigated.

Dynamic Response Analysis of Rotating Composite-VEM Thin-Walled Beams Incorporating Viscoelastic Materials in the Time Domain

  • Na Sung-Soo;Park Jae-Yong;Park Chul-H.;Kwak Moon-K.;Shim Jae-Hong
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.8
    • /
    • pp.1139-1148
    • /
    • 2006
  • This paper addresses the analytical modeling and dynamic response of the advanced composite rotating blade modeled as thin-walled beams and incorporating viscoelastic material. The blade model incorporates non-classical features such as anisotropy, transverse shear, rotary inertia and includes the centrifugal and coriolis force fields. The dual technology including structural tailoring and passive damping technology is implemented in order to enhance the vibrational characteristics of the blade. Whereas structural tailoring methodology uses the directionality properties of advanced composite materials, the passive material technology exploits the damping capabilities of viscoelastic material (VEM) embedded into the host structure. The VEM layer damping treatment is modeled by using the Golla-Hughes-McTavish (GHM) method, which is employed to account for the frequency-dependent characteristics of the VEM. The case of VEM spread over the entire span of the structure is considered. The displayed numerical results provide a comprehensive picture of the synergistic implications of both techniques, namely, the tailoring and damping technology on the dynamic response of a rotating thin-walled b ε am exposed to external time-dependent excitations.

Thermally Induced Vibration Control of Flexible Spacecraft Appendages Using by Piezoelectric Material (압전재료를 이용한 위성체 구조물의 열 진동 제어)

  • 윤일성;송오섭;김규선
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.303-310
    • /
    • 2002
  • The bending vibration and thermal flutter instability of spacecraft booms modeled as circular thin-walled beams of closed cross-section and subjected to thermal radiation loading is investigated in this paper. Thermally induced vibration response characteristics of a composite thin walled beam exhibiting the circumferantially uniform system(CUS) configuration are exploited in connection with the structural flapwise bending-lagwise bending coupling resulting from directional properties of fiber reinforced composite materials and from ply stacking sequence. The numerical simulations display deflection time-history as a function of the ply-angle of fibers of the composite materials, damping factor, incident angle of solar heat flux, as well as the boundary of the thermal flutter instability domain. The adaptive control are provided by a system of piezoelectric devices whose sensing and actuating functions are combined and that an bonded or embedded into the host structure.

  • PDF

Dynamic Characteristics of Composite Thin-Walled Beams with a Chord-Wise Asymmetric Cross-Section: II. Multi-Cell (시위 방향 비대칭 단면의 복합재료 박벽보의 동특성 연구: II. 다중-셀)

  • Kim, Keun-Taek
    • Journal of Aerospace System Engineering
    • /
    • v.13 no.2
    • /
    • pp.51-59
    • /
    • 2019
  • Subsequently, Part I [1], which was about the single-cell model, a composite thin-walled beam with a multi-cell of chord-wise asymmetric cross-section, was selected in this study. Moreover, the theoretical dynamic characteristics of the model were analyzed. For this analysis, mathematical modeling was performed by considering the warping restraint effects, transverse shear effects, taper ratio and cross-section ratio. Similar to part I, the mass, stiffness coefficients and Eigen frequencies of the multi-cell section considered were investigated. In particular, the comparison between the multi-cell and single-cell sections and the effects of the cross-section ratio and taper ratio of the model on the Eigen frequencies were analyzed. However, the results compared when the asymmetry of the section was considered and warping function were not corrected.

Buckling Analysis of Thin-Walled Laminated Composite I-Beams Including Shear Deformation (전단변형을 고려한 적층복합 I형 박벽보의 좌굴해석)

  • Back, Sung Yong;Lee, Seung Sik;Park, Yong Myung
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.5
    • /
    • pp.575-584
    • /
    • 2006
  • In this paper, a shear-flexible finite element model is developed for the buckling analysis of axially loaded, thin-walled composite I-beams. Based on an orthogonal Cartesian coordinate system, the displacement fields are defined using the first-order shear-deformable beam theory. The derived element takes into account flexural shear deformation and torsional warping deformation. Three different types of beam elements, namely, the two-noded, three-noded, and four-noded beam elements, were developed to solve the governing equations. An inverse iteration with shift eigenvalue solution was used to solve the resulting linearized buckling problem. A parametric study was conducted to show the importance of shear flexibility and fiber orientation on the buckling behavior of thin-walled composite beams. A good agreement was obtained among the proposed shear-flexible model, other results available in literature, and the finite element solution.

A C Finite Element of Thin-Walled Laminated Composite I-Beams Including Shear Deformation (전단변형을 고려한 적층복합 I형 박벽보의 C유한요소)

  • Baek, Seong-Yong;Lee, Seung-Sik
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.3
    • /
    • pp.349-359
    • /
    • 2006
  • This paper presents a new block stiffness matrix for the analysis an orthogonal Cartesian coordinate system. The displacement fields are defined using the first order shear deformable beam theory. The longitudinal displacement can be expressed as the sum of the projected plane deformation of the cross-section due to Timoshenko's beam theory and axial warping deformation due to modified Vlasov's thin-waled beam theory. The derived element takes into account flexural shear deformation and torsional warping deformation. Three different types of beam elements, namely, the two-noded, three-noded, and four-noded beam elements, are developed. The quadratic and cubic elements are found to be very efficient for the flexural analysis of laminated composite beams. The versatility and accuracy of the new element are demonstrated by comparing the numerical results available in the literature.