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This paper addresses the analytical modeling and dynamic response of the advanced com-
posite rotating blade modeled as thin-walled beams and incorporating viscoelastic material. The
blade model incorporates non-classical features such as anisotropy, transverse shear, rotary
inertia and includes the centrifugal and coriolis force fields. The dual technology including
structural tailoring and passive damping technology is implemented in order to enhance the
vibrational characteristics of the blade. Whereas structural tailoring methodology uses the
directionality properties of advanced composite materials, the passive material technology ex-
ploits the damping capabilities of viscoelastic material (VEM) embedded into the host structure.
The VEM layer damping treatment is modeled by using the Golla-Hughes-McTavish (GHM)
method, which is employed to account for the frequency-dependent characteristics of the VEM.
The case of VEM spread over the entire span of the structure is considered. The displayed
numerical results provide a comprehensive picture of the synergistic implications of both tech-
niques, namely, the tailoring and damping technology on the dynamic response of a rotating
thin-walled beam exposed to external time-dependent excitations.
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ed beam structure is the most important structure
that can serve as a basic model for a number of
constructions used in the aeronautical and space

1. Introduction
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acteristics are likely to contribute to the improve-
ment of their performance and avoidance of the
occurrence of resonance and any dynamic insta-
bility. An important step toward the rational
design of modern rotor blades and propellers
consists of the development of analytical models
that are capable to accurately predicting their
dynamic behaviors.

One of the possible ways towards achieving
such goals consists in the implementation of vis-
coelastic materials (VEM) embedded or spread
into the host structure, which increase the energy
dissipation due to the characteristics of VEM
which minimize vibrations to improve resiliency.
For instance, increasing the damping levels in
turbo-fan blades is of current interest to both
NASA and the Air Force as a means of making
commercial and military turbo-fan engines more
reliable. Increasing the damping capabilities in
the beams or blades will improve the fatigue life,
operation range and vibration characteristics and
reduce vibration level and aeroelastic instability
matter. The appropriate viscoelastic finite element
modeling of VEM will be called the GHM (Golla-
Hughes-McTavish) method and the system can
be analyzed in the time domain. Validation of the
method is well defined in earlier monographs.
(Lam et al., 1997)

A considered damping material is 3M ISD 112,
which offers higher damping (loss) factors than
any other available vendor-supplied ones. Al-
though of an evident importance, to the best of
author’s knowledge, no such studies including
vibration and dynamic analysis of rotating com-
posite-VEM thin-walled blade exposed to exter-
nal loads can be found in the specialized litera-
ture. The early works on analyses of sandwich
structures with a viscoelastic core were done by
Kerwin (1959) and Ross et al. (1959), DiTaranto
(1965), and Mead and Markus (1969). They present-
ed the fourth and sixth-order theories for beams
and plates to predict damping and handled the
cases with arbitrary boundary conditions. The gov-
erning equations of flexural vibration of symme-
trical sandwich rectangular plate were presented
by Mead and Markus (1969). Rao and Nakra
(1974) proposed a set of 12™-order partial dif-
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ferential governing equation including bending-
extension coupling of unsymmetrical beams and
plates with a viscoelastic core were discussed. C.
Park et al.(1998) derived a new technique to for-
mulate the finite element model of a sandwich
beam by using GHM. C. Park et al.(2005) present-
ed the modeling of a hybrid passive damping sys-
tem for suppressing the multiple vibration modes
of beams, which consists of a constrained layer
damping and a resonant shunt circuit.

In this paper, a study of free and forced vibra-
tion in both the in-plane (lagging) and transverse
to the plane of rotation (flapping) of rotating
beams is addressed. Moreover, by incorporating
the capability referred to as viscoelastic induced
damping scheme control of coupled flapping-
lagging vibration is carried out.

2. Formulation of the Composite-
VEM Thin-Walled Beam

The mode! of the host structure considered en-
compasses a number of features such as: (a) trans-
verse shear, (b) anisotropy of constituent mater-
ials, {c) rotary inertia, (d) the beam cross-sec-
tions feature a symmetric biconvex profile, while
VEM layer is assumed to be isotropic material. Its
geometric configuration and the typical cross-sec-
tion along with the associated system of coor-
dinates are presented in Fig. 1. The inertial coor-
dinates X YZ is attached to the center of the hub
O, and the origin of the rotating axis xyz is
located at the blade root at an offset R, which
denotes the radius of the hub. The points of the
beam cross-sections are identified by the global
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Fig. 1 Rotating blade and coordinate used
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coordinates x, ¥ and z, where z is the spanwise
coordinate and by a local one, #, s, and 2z, (see
Fig. 1) where # and s denote the thicknesswise
coordinate normal to the beam mid-surface and
the tangential one along the contour line of the
beam cross-section, respectively.

In present study, the rotation takes place in
the XZ plane with a constant angular velocity Q.
The equations of rotating thin-walled beams are
based upon the following statements (Shim and
Na, 2003): i) The original cross-section of the
beam is preserved, ii) the transverse shear effects
are taken into account, iii) the circumferential
stress resultant Nss (i.e., the hoop stress resultant)
is negligibly small when compared to the remain-
ing ones, iv) the case of a bi-convex beam cross-
section profile is adopted. In accordance with the
above assumptions and in order to reduce the 3-D
problem to an equivalent 1-D, the components
of the displacement vector in the composite host
structure are expressed as

u(x,y,2,t) =u—y0{z, 1)
vix,v,2,t) =n+x8(2 )

w(x,v,2,t) =wo(z, 1) +0:(z,1) [y(s) —-n%} (1a, b)

+6,(z,1) [x(s) +n%]

—0'(2,8) [Fuls) +nals)]

Oz, ) =yw(z,t) —v5(2, 1)

(2a, b)
Oz, t) =yx(2, ) — iz t)

Egs. (1) and (2) reveal that kinematic variables
(2,t), volz.t), wo(2,1), Ox(x,1), 6,(2, 1), and
@ (z,t) representing three translations in the x, y,
2z directions and three rotations about the x, v, z
directions, respectively are used to define the dis-
placement components, 7, v and w. Furthermore,
7vz and ¥x; denote the transverse shear in the
planes yz and xz respectively and the primes
denote derivatives with respect to the z-coordi-
nate. The primary warping function is expressed
as (Shim and Na, 2003)

Fu= [ [ra(s) =y)ds 3

where the torsional function ¥ and the quantity
72(s), a(s) are

= @)
/ch(s)
and
) = (9 Ly (5) L 5)
als) ==y Dz (o)

Figure 2 reveals the geometrical meaning of a(s)
and 7,(s) as well. The position vector of a point
M (x,y,z) belonging to the deformed structure is

Rix,v,2,t) =(x+u)i+y+v)j+ z+w)k+Ro (7)

Recalling that the spin rate was assumed to be
constant, with the help of equations expressing
the time derivatives of unit vectors, one obtains
the velocity and acceleration vectors of a point
M under the form

=(a+(Ro+2) Q)i+oj— ((x+u) 2k
R=a.d+a,j+ak
=(— (x+u) 2)i+vj (9)
+(—2a2—(Ro+2) 29k

(8)

Herein 7=z/L is the dimensionless spanwise coor-
dinate (#<[0, 1]), where L denotes the wing
semi-span, ¢ and b denote the local wing chord

y
[
6.0 | > v
s n
u
v(2)h 5 w
< r(s) [\ N
@) 1, (z) U *
) wo(2) 8.(2)

Fig. 2 Displacement field for thin walled beam
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Fig. 3 Typical configuration of composite-VEM-
composite thin walled blade

and height, respectively. As result of the consi-
dered anisotropy of the structure and considera-
tion of CUS (Circumferentially Unsymmetric Stiff-
ness) manufacturing technique (Oh et al., 2003),
an exact decoupling of coupled transverse (flap-
ping) -chorwise (lagging) bending expressed in
terms of variables vy, 6y, uo and 6x and coupled
twist (©)-axial (o) motion is implemented. For
the problem studied herein, the coupled flapping
and lagging motions will be considered only. Fig.
3 shows the typical composite-VEM thin walled
blade model that is considered in the present an-
alysis.

3. Golla-Hughes-McTavish
Representation of VEM

A system which has viscoelastic damping is of-
ten modeled as having a complex modulus. How-
ever, use of the complex modulus directly in the
equation of motion leads to a dynamic model
useful only at single-frequency steady-state ex-
citations. The Golla-Hughes~-McTavish (GHM)
modeling approach (McTavish and Hughes, 1992)
provides an alternative method which includes
viscoelastic damping effects without the restric-
tion of steady-state motion by providing extra
coordinates. GHM model introduces hysteretic
damping by adding additional “dissipation coor-
dinates” to the system to achieve a linear non-
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Fig. 4 The “mini-oscillator” mechanical analogy

hysteretic model providing the same damping pro-
perties. The dissipation coordinates are used with
a standard finite element approach or, as in this
work, with assumed modes method. The deriva-
tion of the GHM equations starts with the con-
stitutive relation for a one dimensional stress-
strain system using the theory of linear viscoelas-
ticity.

o(H)=E(1)e(0) + [ Elt=0)-Fe(d)dr (10)

It is assumed that the strain, € is zero for all time
less than zero, and E (¢) is defined as a material
modulus function. The GHM scheme requires the
representation of the material modulus function
as a series of “mini-oscillator” terms or internal
variables. Each mini-oscillator term is a second
order rational function involving three positive
constants, {@,@, { }». Fig. 4 represents the me-
chanical analogy of one modulus system for a
single degree of freedom. The time domain stress
relaxation is modeled by a modulus function in
the Laplace domain. This complex modulus can
be written in Laplace domain from Eq. (10) as

o(s) =sE(s)e(s) (11)
E(s)=E~(1+h(s))
e & 52"‘23‘71@713 (12)
=E <1+,§1“"sz+2§n@ns+@>

where E* is the equilibrium value of the mod-
ulus, i.e. the final value of the modulus function
E(#), and s is the Laplace domain operator. The
hatted terms aré obtained from the curve fit to the
complex modulus data for a particular VEM at a
given temperature. Also, the number of expansion
terms, k£ may be modified to represent the high or
low frequency dependence of the complex terms.
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The expansion of k(s) represents the material
modulus as a series of the mini oscillator (second
order equation) terms. The both real and imagi-
nary part of Young’s modulus for 3M ISD-112 at
temperature 25°C are plotted in Fig. 5. These are
compared to the corresponding curve fitted line
indicated by solid line using 1 ~4 mini oscillator
terms. The curve fitted line is well defined to re-
present the true value of Young’s modulus in fre-
quency range between 10°~ 10° rad/sec, of which
range is interested in the present study. It is noted
that the Young’s modulus is greater for increasing
frequency.

The equation of motion for a single modulus
model with # expansion terms and neglecting
initial conditions,
GHM method is (Park et al.,

in the Laplace domain, via
1998)

2) An A
M) +E( gt B g )29 =F(s) (13)

il St 28 a5+ 05

2 GHM mulhexpanslans

3 GHM -multiexpansions

10°

10
Frequency (rad/sec)

Fig. 5(a) Real part of GHM modulus function
{* : true value, - : curve fitting)

oo
GHM mumexpans:ons

4 GHM mumexpan s:ons

10
Frequency (rad/sec)

Fig. 5(b) Imaginary part of GHM modulus function
(* : true value, - : curve fitting)
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Such added degrees of freedom are also called
internal variables. Egs. (13) and (14) multiplied
by E=, and the following equation of motion
using the dissipation coordinate Eq. (14) can be
assembled as

&)2

z(s) =——~—Sz+2§@s+@2x(w (14)
M, 0 0 0
? x(s x(s)
E‘” [r :lsz-l- 205" { Js
—— K|z (5> 0 ) K, Z(S) (15)
+[(1+a)E°°Ku —aE“KuJ[x(s)J_[F(s) }
-aE°K, QE°K, ||2(s)] | 0

where M, and K, are viscoelastic element mass
and stiffness matrices, respectively.

4. Modeling Formulation
of Composite-VEM
Thin-Walled BEAM

Figure 6 represents the geometry and deforma-
tion of a beam composed of both composite ma-
terial and viscoelastic material subjected to trans-
versal loadings. The system configuration indica-
tes a three layer sandwich beam in which the vis-
coelastic layer is sandwiched between constrain-
ed layer and base layer, which both are made of
the same composite material. Herein, £, f, and £
denotes the thickness of constrained composite
beam, viscoelastic beam and the base composite
beam, respectively.

ui(%,y,2,t) =to,: (16)
vi(x,y,z, t)zvo,i (17)
2y
Constraining layer
e Viscoelastic layer
4 Base layer
tc‘
‘tv
Z,

Fig. 6 Geometry of a beam including Composite-
VEM-Composite layers durmg bending de-
formation
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Ox,i(2, 1) =7sz,: (2, 1) —w5,: (2, 1) (18)

Oy,i(2,t) =yxzi(2,t) +14,: (2, t)

(i=b,v,c) (19)

Egs. (16)-(19) reveal that kinematic variables
(2, 1), volz,t), 6(z,t), 6,(2¢) and represent-
ing two translations in the x, y directions and two
rotations about the x, v directions, respectively
are used to define the displacement components,
u, and v in the present analysis. The transverse
displacements #;, v:(i=b,v,c¢) of all points on
any cross section of the sandwich beam are con-
sidered to be constant in each flappingwise (v:)
and laggingwise (z;) direction, respectively. The
stiffness of composite material depends on the ply
angle implemented in the thin-walled beam, the
following relationships are needed to define shear
strain in each layer (Ready, 1997 ; Hyer, 1997).

E

Ei= (20)
4 A_ 2,..2 A 4
m-i-(G12 2u12>nm+E2n
Gi: G GIZ G (21)
n‘+m‘+2<2f112(1+21/12) HTl;’l) wmt

where m=cos 6, n=sin 6, §=ply angle are de-
fined, respectively.

The shear strain in each layer is defined as
Eq. (22) and corresponding magnitude is propor-
tional to one another as indicated by Eq. (23):

T 14
TG T Cib (Esls+ Eulyt Eol,

) fA EydAs (22)

Yo . Yo Ye=FPo ! Py. P (23)

Herein, P, P, are P evaluated when the char-
acteristic values of each layer are introduced in
Eq. (22).

The following variables are introduced in the
layer of VEM ;

0 =L 50— 350 (24)
b

Hy =% 7'xz,b_u6,b (25>

Furthermore, Egs. (26) and (27) are introduced
in the constrained layer ;

% =% Yot — Vo (26)
ﬁszc:% Yxz,b6 u(;,b (27)

S. Dynamic Equations of Rotating
Contilevered Beams

Hamilton’s variational principle is applied in
order to obtain the equations of motion of adap-
tive rotating beams and the associated boundary
conditions. The variational principle may be stat-
ed as

8]-:-/;:1[-/;0{]'85{]'0’1'_8K_'/;’§i6vidng

(28)
— [oHibvde |dt=0
where
K=1 / (R,-Ry) dr (29)
2 J oM

In these equations, % and # denote two arbitrary
instants of time ; dr(=dndsdz) denotes the dif-
ferential volume element, H; denotes the com-
ponents of the body forces ; denotes the mass den-
sity ; while & denotes the variation operator. By
using equations (1), (7)-(8), imposing Hamilton’s
conditions that 6v;=0 at % and #, and perform-
ing the integration over the s and # directions,
one obtains for the variation of kinetic energy and
for the variation of the strain energy 8V, respec-
tively, (Oh et al., 2003), which are not displayed
here.

These equations are represented in terms of 1-
D stress resultants and stress couples. Within the
present study, for the type of anisotropy consi-
dered herein, (i.e. CUS manufacturing technique)
an exact split of the governing system of equations
and of the associated BCs into two uncoupled
subsystems arises. Since the analysis is confined
here to rotating blades featuring coupled lagging
and flapping motions only, the associated gov-
erning equations and boundary conditions for
cantilevered beams are given explicitely as:

Sito : (du(ué'f' (9y)>/+ (d436;,c) !
+ 2[R (2) us) + 0127 ue— by 11 =0

Svo Z(dss(vé‘f‘ 5x) ) '+ (61529;5)
+Q* bR (2) i) —biv=Pn

(30)

(31)
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89y :(a220§)'+ (dzs(UtH‘ 6x>) —aslx

~ au(us+ 6y) — (bs+ bys) (6,—2%6,) =0 (3
00x:(assbx) + (as(us+ 6y))'— as2 6 (33)
~ ass (05 + Ox) — (bat bra) (02— 2%6:) =0

the Boundary Conditions : at 2=0:
o= vo=Ox=0,=0 (34a-d)
and at z2=1L:
Sto=au(us +05) + anby =0
Svo=ass (v§ + 6%) + as: 65 =0 (330-d)

80y= 205 + ax(v5 + 6x) =0
80xr=as b + ass(uf + 65) =0

Herein the coefficients g;; and b; denote stiffness,
mass of composite structural properties, respec-
tively, which were shown qualitatively in Shim
and Na (2003).

6. Numerical Illustrations and
Discussions

6.1 Model validation

The GHM methodology validation is achieved
in the present part for the simple sandwich beam
through the comparisons with numerical and
experimental results found in the literature. The
beam consisted of an aluminum base beam, with
a layer of 3M ISD 112 viscoelastic material, fol-
lowed by an aluminum constrained layer. It is
assumed that the shear strains in the constrained
layer and in the base beam are negligible. The
transverse displacement of all points on any cross
section of the sandwich beam are considered to
be equal.

The material properties of base and constrain-
ing layer, and viscoelastic material used in simu-
lation were given in Table 1. The first three ei-
genfrequencies and damping ratios are evaluated
for a cantilevered sandwich beam with length
200 mm and width 10 mm. The 3M ISD112 vis-
coelastic material is modeled using GHM scheme,
which parameters evaluated from a curve-fitting
of the material master curves. One may notice that
present results via GHM methodology based on
assumed mode method match well with previous

Table 1 Characteristic values of sandwich beam

Base VEM |Constrained
Paramete
Beam layer layer
Young’s Modulus
. 70 ISD 112 70
(GN/m?)
Mass density | o500 | 1600 | 2700
(kg/m®)
Thickness (mm) 5 0.25 1
Poisson’s ratio 0.33 0.4 0.33

Constrained Layer

/ Viscoelastic Layer

Base Beam

Fig. 7 Sandwiched beam with an Euler beam and a
viscoelastic layer

theoretical and numerical results in the literature
without significant loss of accuracy.

After the methods outlined were tested on the
cantilevered beam shown in Fig. 7, the GHM me-
thodology is extended the composite thin-walled
beam structure shown in Fig. 3.

The characteristic dimension values of a com-
posite material and viscoelastic material were given
in Table 2 and 3, respectively. Table 4 provides
parametric values used in simulation of GHM
methodology. For the free vibration problem, it is
necessary to solve the closed-loop eigenvalue
problem. To this end the unknown variables are
represented in a generic form as

F(z,t)=F(2)exp(t) (36)

Use of the representation (36) in Eqs. (30)-(33)
associated with coupled flapping and lagging mo-
tion results in differential eigenvalue problems
in terms of #o(2), 8,(2), vo(2) and G.(z). The
discretization of the obtained differential eigen-
value problem in the spatial domain was done via
the extended Galerkin method which is carried
out directly in the Hamilton’s principle, Eq. (28).
To this end #(z), 8,(2), Do(2) and B.(2) are
expanded in series of trial functions satisfying
the essential boundary condition. In the case of
implementing viscoelastic material, the solution
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of the algebraic eigenvalue problem yields the
closed-loop eigenvalues

(/Ir, /Tr> zgril'(Udr (37>

r=1,2, .. n

which ¢y is a measure of the damping in the »—th
mode, while wgr is the ¥-th frequency of damp-
ed oscillations. The damping factor in the 7~th

Table 2 Characteristic Values of Graphite/Epoxy

Parameter Value Parameter Value
L 2032 m en 3.103E9 N/m?
=1, 0.00247 m Gu=Ga | 2.55IE9 N/m?
R 0.254 m Vi2= Vas™ Va1 0.25

E. |2.068E11 N/m? 0 1528.28 Kg/m®

EZ:Es 5.171E9 N/m2

Table 3 Characteristic Values of Viscoelastic Mate-
rial (ISD-112)

Parameter Value Parameter Value
L 2.032m G 5ES N/m?
ty 2.477E-4m (5%) o 1250 kg/m®
E 1.4E6 N/m? . 0.4

Table 4 Parametric Value of GHM

Parameter Value
a 6
$ 4
w 10,000
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mode results as

Or
ST E BT 58)

Table 5 shows the comparison of first three ei-
genfrequencies and damping ratios of composite
structure between the Kelvin-Voigt method using
measured complex modulus and the present GHM
methodology.

6.2 The effects of VEM thickness on dy-
namic response of sandwich thin-walled
structure

Figure 8 displays the loss factors of composite

sandwich thin-walled structure with different ply

—+—VEM=1% =-a=-VEM=5% |

|Tra s VEM=10% —e—V EM=20%

105
104
103 fr
ol
101

Loss factor

099
60 90

Ply angle (degree)

Fig. 8 Loss factors of structure with different ply
angles for selected VEM thicknesses

Table 5 Natural frequencies and damping ratios of composite structures using 1-4 mini oscillators

ISD-112 Kelvin- I mini 2 mini 3 mini 4 mini
Voigt® oscillator® oscillators oscillators oscillators
Freq.
160 160 160 160 160
1 (rad/s)
mode i
Damping 0.820 0.620 0.700 0.660 0.619
ratio (%)
Freq.
226 227 227 227 227
2 (rad/s)
mode Damping
1.85 1.96 2.22 2.07 1.94
ratio (%)
Freq.
597 601 601 602 601
3 (rad/s)
mode Damping
2. 3.77 4.32 3.68 3.45
ratio (%) %8
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Fig. 9 Non-dimensional transversal deflections of the

blade tip subjected to step loading for various
VEM thicknesses (2=100rad/s, §=45°)

angles for a few selected VEM thicknesses. It can
be seen from this figure that by increasing the thick-
ness of the viscoelastic material and ply angles,
higher damping can be obtained in the structure.

Also shown in Fig. 9 are nondimensional tras-
versal deflections as functions of time exposed to
step loading as external exciations for various
VEM thicknesses. The blade is rotating with 100
rad/s and ply angle is §=45°. As expected from
Fig. 9, the dynamic response amplitude of blade
tip displacement is reduced as VEM thickness in-
creases. However, it should be noticed that damp-
ing increase is not always a linear function of
VEM thickness.

6.3 The effect of rotating speed to the dy-
namic response of thin-walled blade

Figure 10(a) and (b) depict the nondimension-
al flapping and lagging dynamic response of the
blade rotating with three different speeds (2=
100, 200, 300 rad/s) for 5% of VEM thickness and
@=45°. The results reveal that an increase in ro-
tational speed is accompanied by a decrease in
response in both flapping and lagging direction,
thus displaying centrifugal stiffening. A general
remark emerging from Figs. 10 are that the stiff-
ening effect due to beam rotation also contributes
to the increase of natural frequencies.

6.4 The effect of ply angles to dynamic re-
sponse of blade
Figure 11 obtained for the case of step loading
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Fig. 10 (a), (b) Non-dimensional dynamic response
of blade subjected to step loading with dif-

ferent rotating speeds

t (sec)

Fig. 11 Non-dimensional dynamic response of blade
subjected to step loading with different ply
angles

reveal an attenuation of dynamic response when
using a larger ply angle, which implies increased
flexural stiffness for larger ply angles. Hence, this
directional property of fiber reinforced composi-
tes can be used for effective control via structural
tailoring of the host structure together with vis-
coelastic material.

7. Conclusions

A dynamic structural model of rotating com-
posite thin-walled beam of biconvex cross-sec-
tions including viscoelastic material was devel-
oped, and the effect of the inclusion of viscoelastic
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material was assessed.

The dual technology including structural tai-
loring and passive damping technology is imple-
mented in order to enhance the vibrational char-
acteristics of the blade. Whereas structural tai-
loring methodology uses the directionality prop-
erties of advanced composite materials, the pas-
sive materials technology exploits the damping
capabilities of viscoelastic material (VEM) em-
bedded into the host structure. The VEM layer
damping treatment is modeled by using the Golla-
Hughes-McTavish (GHM) method. The case of
VEM spread over the entire span of the structure
is considered. The displayed numerical results pro-
vide a comprehensive picture of the synergistic
implications of the application of both tech-
niques, namely, the tailoring and damping tech-
nology on dynamic response of rotating thin-
walled beam exposed to external time-dependent
excitations. The obtained results reveal that via
this control capability it is possible to tune con-
veniently the eigenfrequencies of the system, and
consequently to modify in a beneficial and pre-
dictable way the dynamic response characteristics
of the structure. It is also believed that this control
capability can play a major role in enhancing the
fatigue life of the structural booms for space
missions, helicopter rotor blade as well as of tilt
rotor aircraft.
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