• Title/Summary/Keyword: composite target

Search Result 260, Processing Time 0.026 seconds

The Formation of CIGS Thin Films by Sputter Coating Using Single Composite Target and Change of Microstructure with Heat Treatment (단일 복합 타겟으로 스퍼터 코팅된 CIGS 박막의 형성과 열처리에 따른 미세구조 변화)

  • Song, Young Sik;Kim, Jongryoul
    • Journal of the Korean institute of surface engineering
    • /
    • v.46 no.2
    • /
    • pp.61-67
    • /
    • 2013
  • Thin film solar cells have attracted much attention due to their high cell efficiency, comparatively low process cost, and applicability to flexible substrates. In particular, CIGS solar cells have been widely studied and produced because they demonstrated the highest cell efficiency. However, the deposition process of CIGS films generally includes the selenization process conducted at elevated temperature using toxic $H_2Se$ gas. To avoid this selenization process, CIGS thin films were, in this study, deposited by RF sputtering using single composite CIGS target. In addition, the effects of sputtering bias voltage and heat treatment on the microstructural and morphological changes in deposited CIGS films were investigated and discussed.

Fabrication of Alloy Target for Formation of Ti-Al-Si-N Composite Thin Film and Their Mechanical Properties (Ti-Al-Si-N 박막 제작을 위한 합금 타겟 제조 및 박막의 기계적 특성)

  • Lee, Han-Chan
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.10
    • /
    • pp.665-670
    • /
    • 2016
  • Prevailing dissemination of machine tools and cutting technology have caused drastic developments of high speed dry machining with work materials of high hardness, and demands on the high-hardness-materials with high efficiency have become increasingly important in terms of productivity, cost reduction, as well as environment-friendly issue. Addition of Si to TiAlN has been known to form nano-composite coating with higher hardness of over 30 GPa and oxidation temperature over $1,000^{\circ}C$. However, it is not easy to add Si to TiAlN by using conventional PVD technologies. Therefore, Ti-Al-Si-N have been prepared by hybrid process of PVD with multiple target sources or PVD combined with PECVD of Si source gas. In this study, a single composite target of Ti-Al-Si was prepared by powder metallurgy of MA (mechanical alloying) and SPS (spark plasma sintering). Properties of he resulting alloying targets were examined. They revealed a microstructure with micro-sized grain of about $1{\sim}5{\mu}m$, and all the elements were distributed homogeneously in the alloying target. Hardness of the Ti-Al-Si-N target was about 1,127 Hv. Thin films of Ti-Al-Si-N were prepared by unbalanced magnetron sputtering method by using the home-made Ti-Al-Si alloying target. Composition of the resulting thin film of Ti-Al-Si-N was almost the same with that of the target. The thin film of Ti-Al-Si-N showed a hardness of 35 GPa and friction coefficient of 0.66.

A Study on Photon Characteristics Generated from Target of Electron Linear Accelerator for Container Security Inspection using MCNP6 Code (MCNP6 코드를 이용한 컨테이너 보안 검색용 전자 선형가속기 표적에서 발생한 광자 평가에 관한 연구)

  • Lee, Chang-Ho;Kim, Jang-Oh;Lee, Yoon-Ji;Jeon, Chan-hee;Lee, Ji-Eun;Min, Byung-In
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.3
    • /
    • pp.193-201
    • /
    • 2020
  • The purpose of this study is to evaluate the photon characteristics according to the material and thickness of the electrons incidented through a linear accelerator. The computer simulation design is a linear accelerator target consisting of a 2 mm thick tungsten single material and a 1.8 mm and 2.3 mm thick tungsten and copper composite material. In the research method, First, the behavior of primary particles in the target was evaluated by electron fluence and electron energy deposition. Second, photons occurring within the target were evaluated by photon fluence. Finally, the photon angle-energy distribution at a distance of 1 m from the target was evaluated by photon fluence. As a result, first, electrons, which are primary particles, were not released out of the target for electron fluence and energy deposition in the target of a single material and a composite material. Then, electrons were linearly attenuated negatively according to the target thickness. Second, it was found that the composite material target had a higher photon generation than the single material target. This confirmed that the material composition and thickness influences photon production. Finally, photon fluence according to the angular distribution required for shielding analysis was calculated. These results confirmed that the photon generation rate differed depending on the material and thickness of the linear accelerator target. Therefore, this study is necessary for designing and operating a linear accelerator use facility for container security screening that is being introduced in the country. In addition, it is thought that it can be used as basic data for radiation protection.

The Study of Formation of Ti-silicide deposited with Composite Target [II] (Composite Target으로 증착된 Ti-silicide의 현성에 관한 연구[II])

  • Choi, Jin-Seog;Paek, Su-Hyon;Song, Young-Sik;Sim, Tae-Un;Lee, Jong-Gil
    • Korean Journal of Materials Research
    • /
    • v.1 no.4
    • /
    • pp.191-197
    • /
    • 1991
  • The surface roughnesses of titanium silicide films and the diffusion behaviours of dopants in single crystal and polycrystalline silicon substrates durng titanium silicide formation by rapid thermal annealing(RTA) of sputter deposited Ti-filicide film from the composite $TiSi_{2.6}$ target were investigated by the secondary ion mass spectrometry(SIMS), a four-point probe, X-ray diffraction, and surface roughness measurements. The as-deposited films were amorphous but film prepared on single silicon substrate crystallized to the orthorhombic $TiSi_2$(C54 structure) upon rapid thermal annealing(RTA) at $800^{\circ}C$ for 20sec. There was no significant out-diffusion of dopants from both single crystal and polycrystalline silicon substrate into titanum silicide layers during annealing. Most of the implanted dopants piled up near the titanium silicide/silicon interface. The surface roughnesses of titanium silicide films were in the range between 16 and 22nm.

  • PDF

Analysis of Sputter-Deposited SnO thin Film with SnO/Sn Composite Target (SnO/Sn 혼합 타겟을 이용한 SnO 박막 제조 및 특성)

  • Kim, Cheol;Kim, Sungdong;Kim, Sarah Eunkyung
    • Korean Journal of Materials Research
    • /
    • v.26 no.4
    • /
    • pp.222-227
    • /
    • 2016
  • Tin oxides have been studied for various applications such as gas detecting materials, transparent electrodes, transparent devices, and solar cells. p-type SnO is a promising transparent oxide semiconductor because of its high optical transparency and excellent electrical properties. In this study, we fabricated p-type SnO thin film using rf magnetron sputtering with an SnO/Sn composite target; we examined the effects of various oxygen flow rates on the SnO thin films. We fundamentally investigated the structural, optical, and electrical properties of the p-type SnO thin films utilizing X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), UV/Vis spectrometry, and Hall Effect measurement. A p-type SnO thin film of $P_{O2}=3%$ was obtained with > 80% transmittance, carrier concentration of $1.12{\times}10^{18}cm^{-3}$, and mobility of $1.18cm^2V^{-1}s^{-1}$. With increasing of the oxygen partial pressure, electrical conductivity transition from p-type to n-type was observed in the SnO crystal structure.

Structural Analysis of a Composite Target-drone

  • Park, Yong-Bin;Nguyen, Khanh-Hung;Kweon, Jin-Hwe;Choi, Jin-Ho;Han, Jong-Su
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.12 no.1
    • /
    • pp.84-91
    • /
    • 2011
  • A finite element analysis for the wing and landing gear of a composite target-drone air vehicle was performed. For the wing analysis, two load cases were considered: a 5g symmetric pull-up and a -1.5g symmetric push-over. For the landing gear analysis, a sinking velocity of 1.4 m/s at a 2g level landing condition was taken into account. MSC/NASTRAN and LS-DYNA were utilized for the static and dynamic analyses, respectively. Finite element results were verified by the static test of a prototype wing under a 6g symmetric pull-up condition. The test showed a 17% larger wing tip deflection than the finite element analysis. This difference is believed to come from the material and geometrical imperfections incurred during the manufacturing process.

Assessment of radiopacity of restorative composite resins with various target distances and exposure times and a modified aluminum step wedge

  • Mir, Arash Poorsattar Bejeh;Mir, Morvarid Poorsattar Bejeh
    • Imaging Science in Dentistry
    • /
    • v.42 no.3
    • /
    • pp.163-167
    • /
    • 2012
  • Purpose: ANSI/ADA has established standards for adequate radiopacity. This study was aimed to assess the changes in radiopacity of composite resins according to various tube-target distances and exposure times. Materials and Methods: Five 1-mm thick samples of Filtek P60 and Clearfil composite resins were prepared and exposed with six tube-target distance/exposure time setups (i.e., 40 cm, 0.2 seconds; 30 cm, 0.2 seconds; 30 cm, 0.16 seconds, 30 cm, 0.12 seconds; 15 cm, 0.2 seconds; 15 cm, 0.12 seconds) performing at 70 kVp and 7 mA along with a 12-step aluminum stepwedge (1 mm incremental steps) using a PSP digital sensor. Thereafter, the radiopacities measured with Digora for Windows software 2.5 were converted to absorbencies (i.e., A=-log (1-G/255)), where A is the absorbency and G is the measured gray scale). Furthermore, the linear regression model of aluminum thickness and absorbency was developed and used to convert the radiopacity of dental materials to the equivalent aluminum thickness. In addition, all calculations were compared with those obtained from a modified 3-step stepwedge (i.e., using data for the 2nd, 5th, and 8th steps). Results: The radiopacities of the composite resins differed significantly with various setups (p<0.001) and between the materials (p<0.001). The best predicted model was obtained for the 30 cm 0.2 seconds setup ($R^2$=0.999). Data from the reduced modified stepwedge was remarkable and comparable with the 12-step stepwedge. Conclusion: Within the limits of the present study, our findings support that various setups might influence the radiopacity of dental materials on digital radiographs.

Fabrication of ZnS-SiO2 Composite and its Mechanical Properties (방전플라즈마 소결법을 이용한 ZnS-SiO2 복합재료의 제조와 기계적 특성)

  • Shin, Dae-Hoon;Kim, Gil-Su;Lee, Young-Jung;Cho, Hoon;Kim, Young-Do
    • Journal of Powder Materials
    • /
    • v.15 no.1
    • /
    • pp.1-5
    • /
    • 2008
  • ZnS-$SiO_2$ composite is normally used for sputtering target. In recent years, high sputtering power for higher deposition rate often causes crack formation of the target. Therefore the target material is required that the sintered target material should have high crack resistance, excellent strength and a homogeneous microstructure with high sintered density. In this study, raw ZnS and ZnS-$SiO_2$ powders prepared by a 3-D mixer or high energy ball-milling were successfully densified by spark plasma sintering, the effective densification method of hard-to-sinter materials in a short time. After sintering, the fracture toughness was measured by the indentation fracture (IF) method. Due to the effect of crack deflection by the residual stress occurred by the second phase of fine $SiO_2$, the hardness and fracture toughness reached to 3.031 GPa and $1.014MPa{\cdot}m^{1/2}$, respectively.

Binary Mixture Rule for Predicting the Dielectric Properties of Unidirectional E-glass/Epoxy Composite Materials (일방향 유리섬유/에폭시 복합재료의 유전성질 예측을 위한 혼합법칙)

  • Chin Woo Seok;Lee Dai Gil
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.10a
    • /
    • pp.175-179
    • /
    • 2004
  • Since the electromagnetic properties of fiber reinforced polymeric composites can be tailored effectively by adding small amount of electromagnetic powders to the matrix of composites, they are plausible materials for fabricating the radar absorbing structures (RAS) of desired performance. In order to design the effective electromagnetic wave (EM) absorber with the fiber reinforced polymeric composites, the electromagnetic characteristics with respect to the constituents of the composite should be available in the target frequency band. In order to describe the dielectric behavior of low loss unidirectional fiber reinforced composite, theoretical models and mixture equations for estimating its dielectric constant were proposed with respect to the fiber, matrix volume fractions and fiber orientations, and verified by the experiments. From the investigation, it was found that the suggested binary mixture rules agreed well with the experimental results.

  • PDF

Moment ratio considering composite beam action for steel special moment frames

  • Sang Whan Han;Soo Ik Cho;Taeo Kim;Kihak Lee
    • Steel and Composite Structures
    • /
    • v.47 no.4
    • /
    • pp.489-502
    • /
    • 2023
  • The strong column-weak beam (SCWB) moment ratio is specified in AISC 341 to prevent an abrupt column sway in steel special moment frames (SMFs) during earthquakes. Even when the SCWB requirement is satisfied for an SMF, a column-sway can develop in the SMF. This is because the contribution of the composite beam action developed in the concrete floor slab and its supporting beams was not included while calculating the SCWB moment ratio. In this study, we developed a new method for calculating the SCWB moment ratio that included the contribution of composite beam action. We evaluated the seismic collapse performance of the SMFs considering various risk categories and building heights. We demonstrated that the collapse performance of the SMFs was significantly improved by using the proposed SCWB equation that also satisfied the target performance specified in ASCE 7.