DOI QR코드

DOI QR Code

Fabrication of ZnS-SiO2 Composite and its Mechanical Properties

방전플라즈마 소결법을 이용한 ZnS-SiO2 복합재료의 제조와 기계적 특성

  • Shin, Dae-Hoon (Division of Materials Science & Engineering, Hanyang University) ;
  • Kim, Gil-Su (Division of Materials Science & Engineering, Hanyang University) ;
  • Lee, Young-Jung (Division of Materials Science & Engineering, Hanyang University) ;
  • Cho, Hoon (Nano Material Team, Korea Institute of Industrial Technology) ;
  • Kim, Young-Do (Division of Materials Science & Engineering, Hanyang University)
  • 신대훈 (한양대학교 재료공학부) ;
  • 김길수 (한양대학교 재료공학부) ;
  • 이영중 (한양대학교 재료공학부) ;
  • 조훈 (한국생산기술연구원 나노소재팀) ;
  • 김영도 (한양대학교 재료공학부)
  • Published : 2008.02.28

Abstract

ZnS-$SiO_2$ composite is normally used for sputtering target. In recent years, high sputtering power for higher deposition rate often causes crack formation of the target. Therefore the target material is required that the sintered target material should have high crack resistance, excellent strength and a homogeneous microstructure with high sintered density. In this study, raw ZnS and ZnS-$SiO_2$ powders prepared by a 3-D mixer or high energy ball-milling were successfully densified by spark plasma sintering, the effective densification method of hard-to-sinter materials in a short time. After sintering, the fracture toughness was measured by the indentation fracture (IF) method. Due to the effect of crack deflection by the residual stress occurred by the second phase of fine $SiO_2$, the hardness and fracture toughness reached to 3.031 GPa and $1.014MPa{\cdot}m^{1/2}$, respectively.

Keywords

References

  1. M. Horie, T Ohno: Thin Solid Films, 278 (1996) 74-81 https://doi.org/10.1016/0040-6090(95)08184-4
  2. Y. Kageyama, H. Iwasaki, M. Harigaya and Y. Ide: Jpn. J. Appl. Phys., 35 (1996) 500 https://doi.org/10.1143/JJAP.35.500
  3. M. Terao, A. Hirotsune, Y. Miyauchi, M. Miyamoto, T. Nishida and K. Andoh: Proc. SPIE, 3109 (1997) 60 https://doi.org/10.1117/12.280673
  4. G. F. Zhou: Mater. Sci. Eng. A, 304-306 (2001) 73-80 https://doi.org/10.1016/S0921-5093(00)01448-9
  5. H. J. Borg and J. P. Duchateau: Proc. SPIE, 3109 (1997) 20 https://doi.org/10.1117/12.280700
  6. T. Ueno and Y. Noguchi: U.S. Patent 6,656,260 (2003) 1-8
  7. W. Luan, L. Gao, H. Kawaoka, T. Sekino and K. Niihara: Ceram. Int., 30 (2004) 405-410 https://doi.org/10.1016/S0272-8842(03)00124-X
  8. P. P. Choi, J. S. Kim, O. T. H. Nguyen, D. H. Kwon, Y. S. Kwon and J. C. Kim: Mater. Sci. Eng. A, 449-451 (2007) 1119-1122 https://doi.org/10.1016/j.msea.2006.02.264
  9. W. H. Rhodes: J. Am. Ceram. Soc., 64 (1981) 19-22 https://doi.org/10.1111/j.1151-2916.1981.tb09552.x
  10. M. N. Rahaman and L.C. De Jonghe: J. Am. Ceram. Soc., 70(12) (1987) c348-c351 https://doi.org/10.1111/j.1151-2916.1987.tb04916.x
  11. J. Selsing: J. Am. Ceram. Soc., 44(8) (1961) 419 https://doi.org/10.1111/j.1151-2916.1961.tb15475.x
  12. K. Niihara and R. Morena: Fracture mechanics of solid, Penn. State College, (1981)
  13. Y. Suzuki and K. Niihara: Intermetallics, 6 (1998) 7-13 https://doi.org/10.1016/S0966-9795(97)00039-3
  14. Y. D. Kim, K. Sonezaki, H. Maeda and A. Kato: J. Mat. Sci., 32 (1997) 5101-5106 https://doi.org/10.1023/A:1018613316157
  15. S. Donald, Farquhar, Rishi Raj, and S. Leigh Phoenix: J. Am. Ceram. Soc., 73(10) (1990) 3074-80 https://doi.org/10.1111/j.1151-2916.1990.tb06719.x
  16. G. K. Williamson and W. H. Hall: Acta Metal., 1 (1953) 22 https://doi.org/10.1016/0001-6160(53)90006-6