• Title/Summary/Keyword: compactibility

Search Result 20, Processing Time 0.026 seconds

Effect of Powder and Aggregates on Compactability of High Performance Concrete

  • Lee, Seung-Han;Han, Hyung-sub
    • KCI Concrete Journal
    • /
    • v.11 no.3
    • /
    • pp.19-28
    • /
    • 1999
  • This study treated self-compacting high Performance concrete as two Phase materials of Paste and aggregates and examined the effect of powder and aggregates on self-compacting high performance, since fluidity and segregation resistance of fresh concrete are changed mainly by paste. To improve the fluidity and self-compactibility of concrete, optimum powder ratio of self-compacting high performance concrete using fly ash and blast-furnace slag as powders were calculated. This study was also designed to provide basic materials for suitable design of mix proportion by evaluating fluidity and compactibility by various volume ratios of fine aggregates, paste, and aggregates. As a result, the more fly ash was replaced, the more confined water ratio was reduced because of higher fluidity. The smallest confined water ratio was determined when 15% blast-furnace slag was replaced. The lowest confined water ratio was acquired when 20% fly ash and 15% blast-furnace slag were replaced together. The optimum fine aggregates ratio with the best compactibility was the fine aggregate ratio with the lowest percentage of void in mixing coarse aggregate and fine aggregate In mixing the high performance concrete. Self-compacting high performance concrete with desirable compactibility required more than minimum of unit volume weight. If the unit volume weight used was less than the minimum, concrete had seriously reduced compactibility.

  • PDF

Compaction Simulator Study on Pectin Introducing Dwell Time

  • Kim, Hyun-Jo;Venkatesh, Gopi
    • Journal of Pharmaceutical Investigation
    • /
    • v.35 no.4
    • /
    • pp.243-247
    • /
    • 2005
  • Although many scientists have used pectin, its feasibility in terms of tablet manufacturability with a high speed machine has never been evaluated. Therefore, compactibility of different pectin types for large scale tableting operation has been evaluated. The compactibility behavior of powder pectins was studied by a compaction simulator. It was found that pectin on its own does not produce tablets of acceptable quality even at a punch velocity as low as 20 rpm (e.g. low tensile strengths, capping and lamination irrespective of applied compression force). Thus, dwell time was introduced and more hard compact was produced as relaxation time in die increases. It was concluded that frequent structural failure observed in both pectin types was due to lack of plastic deformation, poor compactibility and high elastic recovery.

The Properties of the Super Flowing Concrete using manufactured sand (부순모래를 사용한 초류동 콘크리트의 배합특성)

  • 권영호;이상수;안재현;박칠림
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.10a
    • /
    • pp.83-88
    • /
    • 1997
  • In this paper, we described the basic elements (relative flowing area ratio and funeling velocity ratio in mortar, flowability and self-compactibility in concrete, and etc.) required for the maximum mix design of the super flowing concrete (SFC) using manufactured sand. Also, manufactured sand and fly ash were used for investigating characteristics of SFC through various experiments (replacement ratio of manufactured sand, optimum mix condition) before producing the concrete in batch plant. As the result of this project, the SFC using manufactured sand up to 50% showed high flowability and self-compactibility in fresh concrete. Furthermore, its compressive strength is higher than normal concrete without manufactured sand. From now on, this study may suggest how to apply manufactured sand in the SFC.

  • PDF

Effect of Particle Size on Compactibility of Water-atomized Pure Iron Powder (수분사법으로 제조된 순철분말의 성형성에 미치는 분말크기의 영향)

  • Lee, Dong-Jun;Yoon, Eun-Yoo;Kim, Ha-Neul;Kang, Hee-Soo;Lee, Eon-Sik;Kim, Hyoung-Seop
    • Journal of Powder Materials
    • /
    • v.18 no.3
    • /
    • pp.221-225
    • /
    • 2011
  • In the current study, the effects of particle size on compaction behavior of water-atomized pure iron powders are investigated. The iron powders are assorted into three groups depending on the particle size; 20-45 ${\mu}M$, 75-106 ${\mu}M$, and 150-180 ${\mu}M$ for the compaction experiments. The powder compaction procedures are processed with pressure of 200, 400, 600, and 800 MPa in a cylindrical die. After the compaction stage, the group having 150-180 ${\mu}M$ of particle size distribution shows the best densification behavior and reaches the highest green density. The reason for these results can be explained by the largest average grain size in the largest particle group, due to the low plastic deformation resistance in large grain sized materials.

The Experience Study on the Floating Properties of High Flow Concrete on volum of Coarse Aggregate used Admixture (굵은골재 체적에 따른 고유동콘크리트의 유동특성에 관한 실험적 연구)

  • Choi, Sung-Woo;Kim, Ho-So;Baek, Chul-Woo;Ban, Seong-Soo;Ryu, Deuk-Hyun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.751-754
    • /
    • 2004
  • There are many factors that affect on the flowing properties of high flowing concrete(HFC), which are fluidity, compactibility, non-segregation ability and fillingability. And because the aggregate which is one of the factors occupies high volume in concrete, it has a much effect on the properties of high flowing concrete according to its size, quality and quantity etc. This is an experimental study to analyze the effect of admixture and volume of coarse aggregate in concrete on the flowing properties of high flowing concrete. For this purpose, the kinds of admixture are fly-ash and blast furnace slag. Also volume of coarse aggregate in concrete are 280, 290, 300, 310, 320 $(\ell/m^3)$. The test of flowablity properties is slump-flow, Air content, V-lot, L-Flow. According to test results, it was found that the compactibility of HFC is more superior to use blast furnace slag than other, and according .to kind of admixture, most compatible volume of coarse are different. Also when used blast furnace slag, the volume of coarse are increased than used fly-ash.

  • PDF

A Study on the Compactibility of Quick-lime Mixed with Soil (생석탄 혼합토의 다짐성에 관한 연구)

  • 김철규
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.12 no.1
    • /
    • pp.1883-1886
    • /
    • 1970
  • This study was made to obtain the optium compaction of quicklime mixed with soil and to find out the relation of the quicklime mix ratio, dry density and strength by changing the compaction rounds. The obtained results are as follows. 1. The maximun dry density of unmixed soil in not distinguishable, while that of mixed soil is distinguishable. 2. What the increase of quicklime mix ratio, the dry density and strength increase and the optimum quicklime mix ratio could be obtained. 3. With the increase of compaction rounds, the dry density and strength increase, while they decrease in a certain limit and maximum dry density and strength could be obtained.

  • PDF

Study of initial setting for solidification process of dredged soil of rural stream (농촌 소하천 고함수비 퇴적 저지의 고화처리에 대한 초기응결연구)

  • Chang, Pyung-Wuck;Woo, Chull-Woong;Kim, Seong-Pil;Kim, Jae-Hyung
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.345-348
    • /
    • 2002
  • The dredged soils of rural streams can be treated with cement for recycling. It is very important to know whether the treated soils have achieved some required qualities for further treatments if the soils are mixed with cement. In this study, fall-cone test was used to examine changes in workability and compactibility during an curing time of soil-cement mixture. Test results showed that fall-cone apparatus can be satisfactorily used for this purpose. Although there was some difference of initial curing time and cement contents, the engineering properties of treated soils were little affected.

  • PDF

Geotechnical behavior of a beta-1,3/1,6-glucan biopolymer-treated residual soil

  • Chang, Ilhan;Cho, Gye-Chun
    • Geomechanics and Engineering
    • /
    • v.7 no.6
    • /
    • pp.633-647
    • /
    • 2014
  • Biopolymers, polymers produced by living organisms, are used in various fields (e.g., medical, food, cosmetic, medicine) due to their beneficial properties. Recently, biopolymers have been used for control of soil erosion, stabilization of aggregate, and to enhance drilling. However, the inter-particle behavior of such polymers on soil behavior are poorly understood. In this study, an artificial biopolymer (${\beta}$-1,3/1,6-glucan) was used as an engineered soil additive for Korean residual soil (i.e., hwangtoh). The geotechnical behavior of the Korean residual soil, after treatment with ${\beta}$-1,3/1,6-glucan, were measured through a series of laboratory approaches and then analyzed. As the biopolymer content in soil increased, so did its compactibility, Atterberg limits, plasticity index, swelling index, and shear modulus. However, the treatment had no effect on the compressional stiffness of the residual soil, and the polymer induced bio-clogging of the soil's pore spaces while resulting in a decrease in hydraulic conductivity.

Rheology Properties of the Super Flowing Concrete according to Binders (분체종류에 따른 초유동 콘크리트의 레오로지 특성에 관한 연구)

  • 박칠림;안재현;권영호;이상수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.04a
    • /
    • pp.3-8
    • /
    • 1998
  • This research is to examine the relationships between viscosity and fluidity according to binders in the super flowing concrete. And this research is described with respect to rheology concept, confined water ratio($\beta_p$) of binders in paste and mortar, also investigated experimentally the relationships between the relative flowing ratio ($\Gamma_m$) and the funneling velocity ratio($R_m$) on the mortar state according to the water binder ratio(W/B) and the dosage of the superplasticizer. From the confined water ratio tests, it is found that $\beta_p$ of the class C fly ash is higher than that of the class F fly and limestone in paste and mortar, therefore class F fly ash and limestone and super flowing concrete. The result of test, the optimum mix condition to the compactibility if satisfied when the replacement ratio is 30% and $K_p$ is 0.8 for the case of fly ash and limestone.

  • PDF