DOI QR코드

DOI QR Code

Effect of Particle Size on Compactibility of Water-atomized Pure Iron Powder

수분사법으로 제조된 순철분말의 성형성에 미치는 분말크기의 영향

  • Lee, Dong-Jun (Department of Materials Science and Engineering, POSTECH(Pohang University of Science and Technology)) ;
  • Yoon, Eun-Yoo (Department of Materials Science and Engineering, POSTECH(Pohang University of Science and Technology)) ;
  • Kim, Ha-Neul (New Materials Research Department, RIST) ;
  • Kang, Hee-Soo (New Materials Research Department, RIST) ;
  • Lee, Eon-Sik (New Materials Research Department, RIST) ;
  • Kim, Hyoung-Seop (Department of Materials Science and Engineering, POSTECH(Pohang University of Science and Technology))
  • 이동준 (포항공과대학교 신소재공학과) ;
  • 윤은유 (포항공과대학교 신소재공학과) ;
  • 김하늘 (포항산업과학원구원 신금속연구본부) ;
  • 강희수 (포항산업과학원구원 신금속연구본부) ;
  • 이언식 (포항산업과학원구원 신금속연구본부) ;
  • 김형섭 (포항공과대학교 신소재공학과)
  • Received : 2011.02.10
  • Accepted : 2011.04.19
  • Published : 2011.06.28

Abstract

In the current study, the effects of particle size on compaction behavior of water-atomized pure iron powders are investigated. The iron powders are assorted into three groups depending on the particle size; 20-45 ${\mu}M$, 75-106 ${\mu}M$, and 150-180 ${\mu}M$ for the compaction experiments. The powder compaction procedures are processed with pressure of 200, 400, 600, and 800 MPa in a cylindrical die. After the compaction stage, the group having 150-180 ${\mu}M$ of particle size distribution shows the best densification behavior and reaches the highest green density. The reason for these results can be explained by the largest average grain size in the largest particle group, due to the low plastic deformation resistance in large grain sized materials.

Keywords

References

  1. H. S. Kim and D. N. Lee: J. Kor. Inst. Metal., 20 (1992) 37.
  2. R. M. German: Powder Metallurgy of iron and Steel, John Wiley & Sons, Inc. New York (1998) 128.
  3. A. Salak: Ferrous powder metallurgy, CISP, Cambrige, UK (1996) 62.
  4. J. S. Hirschhorn, G. M. Maxwell and A. V. Nadkarni: Powder Tech., 5 (1971) 72.
  5. I. Nikolakakis and N. Pilpel: Powder Tech., 56 (1988) 95. https://doi.org/10.1016/0032-5910(88)80003-2
  6. D. Poquillon, J. Lemaitre, V. Baco-Carles, Ph. Tailhades and J. Lacaze: Powder Tech., 126 (2002) 65. https://doi.org/10.1016/S0032-5910(02)00034-7
  7. D. Poquillon, J. Lemaitre, V. Baco-Carles, Ph. Tailhades and J. Lacaze: Powder Tech., 126 (2002) 75. https://doi.org/10.1016/S0032-5910(02)00035-9
  8. D. P. Debrincat, C. B. Solnordal and J. S. J. Van Deventer: Mineral Proc., 87 (2008) 17. https://doi.org/10.1016/j.minpro.2008.01.003
  9. H. S. Kim and J. S. Lee: J. Kor. Inst. Metal., 11 (2004) 301.
  10. R. M. German: Powder Metallurgy of iron and Steel, John Wiley & Sons, Inc. New York (1998) 152.
  11. E. O. Hall: Proc. Phys. Soc., B64 (1951) 747.
  12. N. J. Petch: J. Iron Steel Inst., 174 (1953) 25.
  13. R. M. German: Powder Metallurgy of iron and Steel, John Wiley & Sons, Inc. New York (1998) 149.

Cited by

  1. Quantitative Analysis of Roughness of Powder Surface Using Three-Dimensional Laser Profiler and its Effect on Green Strength of Powder Compacts vol.18, pp.5, 2011, https://doi.org/10.4150/KPMI.2011.18.5.406