• Title/Summary/Keyword: commuting mappings

Search Result 41, Processing Time 0.027 seconds

EMPLOYING COMMON LIMIT RANGE PROPERTY WITH VARIANTS OF R-WEAKLY COMMUTING MAPPINGS IN METRIC SPACES

  • CHAUHAN, SUNNY;VUJAKOVIC, JELENA;HAQ, SHAMSUL
    • The Pure and Applied Mathematics
    • /
    • v.22 no.2
    • /
    • pp.127-138
    • /
    • 2015
  • The object of this paper is to emphasize the role of 'common limit range property' and utilize the same with variants of R-weakly commuting mappings for the existence of common fixed point under strict contractive conditions in metric spaces. We also furnish some interesting examples to validate our main result. Our results improve a host of previously known results including the ones contained in Pant [Contractive conditions and common fixed points, Acta Math. Acad. Paedagog. Nyhàzi. (N.S.) 24(2) (2008), 257-266 MR2461637 (2009h:54061)]. In the process, we also derive a fixed point result satisfying $\phi$-contractive condition.

FIXED POINTS OF CONVERSE COMMUTING MAPPINGS USING AN IMPLICIT RELATION

  • Chauhan, Sunny;Khan, M. Alamgir;Sintunavarat, Wutiphol
    • Honam Mathematical Journal
    • /
    • v.35 no.2
    • /
    • pp.109-117
    • /
    • 2013
  • In the present paper, we utilize the notion of converse commuting mappings due to L$\ddot{u}$ [On common fixed points for converse commuting self-maps on a metric spaces, Acta. Anal. Funct. Appl. 4(3) (2002), 226-228] and prove a common fixed point theorem in Menger space using an implicit relation. We also give an illustrative example to support our main result.

APPROXIMATION OF NEAREST COMMON FIXED POINTS OF ASYMPTOTICALLY I-NONEXPANSIVE MAPPINGS IN BANACH SPACES

  • Cho, Yeol-Je;Hussain, Nawab;Pathak, Hemant Kumar
    • Communications of the Korean Mathematical Society
    • /
    • v.26 no.3
    • /
    • pp.483-498
    • /
    • 2011
  • In this paper, we introduce a new class of uniformly point-wise R-subweakly commuting self-mappings and prove several common fixed point theorems and best approximation results for uniformly point-wise R-subweakly commuting asymptotically I-nonexpansive mappings in normed linear spaces. We also establish some results concerning strong convergence of nearest common fixed points of asymptotically I-non-expansive mappings in reflexive Banach spaces with a uniformly G$\^{a}$teaux differentiable norm. Our results unify and generalize various known results given by some authors to a more general class of noncommuting mappings.

RENARKS ON REWEAKLY COMMUTING MAPPONGS AND COMMON FIXED POINT THEOREMS

  • Pathak, H.-K;Cho, Y.-J;Kang, S.-M
    • Bulletin of the Korean Mathematical Society
    • /
    • v.34 no.2
    • /
    • pp.247-257
    • /
    • 1997
  • It was the turning point in the "fixed point arena" when the notion of weak commutativity was introduced by Sessa [9] as a sharper tool to obtain common fixed points of mappings. As a result, all the results on fixed point theorems for commuting mappings were easily transformed in the setting of the new notion of weak commutativity of mappings. It gives a new impetus to the studying of common fixed points of mappings satisfying some contractive type conditions and a number of interesting results have been found by various authors. A bulk of results were produced and it was the centre of vigorous research activity in "Fixed Point Theory and its Application in various other Branches of Mathematical Sciences" in last two decades. A major break through was done by Jungck [3] when he proclaimed the new notion what he called "compatibility" of mapping and its usefulness for obtaining common fixed points of mappings was shown by him. There-after a flood of common fixed point theorems was produced by various researchers by using the improved notion of compatibility of mappings. of compatibility of mappings.

  • PDF

COMMON FIXED POINT RESULTS FOR NON-COMPATIBLE R-WEAKLY COMMUTING MAPPINGS IN PROBABILISTIC SEMIMETRIC SPACES USING CONTROL FUNCTIONS

  • Das, Krishnapada
    • Korean Journal of Mathematics
    • /
    • v.27 no.3
    • /
    • pp.629-643
    • /
    • 2019
  • In common fixed point problems in metric spaces several versions of weak commutativity have been considered. Mappings which are not compatible have also been discussed in common fixed point problems. Here we consider common fixed point problems of non-compatible and R-weakly commuting mappings in probabilistic semimetric spaces with the help of a control function. This work is in line with research in probabilistic fixed point theory using control functions. Further we support our results by examples.

ON 3-ADDITIVE MAPPINGS AND COMMUTATIVITY IN CERTAIN RINGS

  • Park, Kyoo-Hong;Jung, Yong-Soo
    • Communications of the Korean Mathematical Society
    • /
    • v.22 no.1
    • /
    • pp.41-51
    • /
    • 2007
  • Let R be a ring with left identity e and suitably-restricted additive torsion, and Z(R) its center. Let H : $R{\times}R{\times}R{\rightarrow}R$ be a symmetric 3-additive mapping, and let h be the trace of H. In this paper we show that (i) if for each $x{\in}R$, $$n=<<\cdots,\;x>,\;\cdots,x>{\in}Z(R)$$ with $n\geq1$ fixed, then h is commuting on R. Moreover, h is of the form $$h(x)=\lambda_0x^3+\lambda_1(x)x^2+\lambda_2(x)x+\lambda_3(x)\;for\;all\;x{\in}R$$, where $\lambda_0\;{\in}\;Z(R)$, $\lambda_1\;:\;R{\rightarrow}R$ is an additive commuting mapping, $\lambda_2\;:\;R{\rightarrow}R$ is the commuting trace of a bi-additive mapping and the mapping $\lambda_3\;:\;R{\rightarrow}Z(R)$ is the trace of a symmetric 3-additive mapping; (ii) for each $x{\in}R$, either $n=0\;or\;<n,\;x^m>=0$ with $n\geq0,\;m\geq1$ fixed, then h = 0 on R, where denotes the product yx+xy and Z(R) is the center of R. We also present the conditions which implies commutativity in rings with identity as motivated by the above result.

SOME COMMON FIXED POINT THEOREMS WITH CONVERSE COMMUTING MAPPINGS IN BICOMPLEX-VALUED PROBABILISTIC METRIC SPACE

  • Sarmila Bhattacharyya;Tanmay Biswas;Chinmay Biswas
    • The Pure and Applied Mathematics
    • /
    • v.31 no.3
    • /
    • pp.299-310
    • /
    • 2024
  • The probabilistic metric space as one of the important generalizations of metric space, was introduced by Menger [16] in 1942. Later, Choi et al. [6] initiated the notion of bicomplex-valued metric spaces (bi-CVMS). Recently, Bhattacharyya et al. [3] linked the concept of bicomplex-valued metric spaces and menger spaces, and initiated menger space with bicomplex-valued metric. Here, in this paper, we have taken probabilistic metric space with bicomplex-valued metric, i.e., bicomplexvalued probabilistic metric space and proved some common fixed point theorems using converse commuting mappings in this space.

PROVING UNIFIED COMMON FIXED POINT THEOREMS VIA COMMON PROPERTY (E-A) IN SYMMETRIC SPACES

  • Soliman, Ahmed Hussein;Imdad, Mohammad;Hasan, Mohammad
    • Communications of the Korean Mathematical Society
    • /
    • v.25 no.4
    • /
    • pp.629-645
    • /
    • 2010
  • A metrical common fixed point theorem proved for a pair of self mappings due to Sastry and Murthy ([16]) is extended to symmetric spaces which in turn unifies certain fixed point theorems due to Pant ([13]) and Cho et al. ([4]) besides deriving some related results. Some illustrative examples to highlight the realized improvements are also furnished.