DOI QR코드

DOI QR Code

FIXED POINTS OF CONVERSE COMMUTING MAPPINGS USING AN IMPLICIT RELATION

  • Chauhan, Sunny (Near Nehru Training Centre) ;
  • Khan, M. Alamgir (Department of Natural Resources Engineering and Management, University of Kurdistan) ;
  • Sintunavarat, Wutiphol (Department of Mathematics, Faculty of Science, King Mongkut's University of Technology Thonburi (KMUTT))
  • Received : 2012.09.08
  • Accepted : 2013.04.25
  • Published : 2013.06.25

Abstract

In the present paper, we utilize the notion of converse commuting mappings due to L$\ddot{u}$ [On common fixed points for converse commuting self-maps on a metric spaces, Acta. Anal. Funct. Appl. 4(3) (2002), 226-228] and prove a common fixed point theorem in Menger space using an implicit relation. We also give an illustrative example to support our main result.

Keywords

References

  1. I. Altun and D. Turkoglu, Some fixed point theorems on fuzzy metric spaces with implicit relations, Commun. Korean Math. Soc. 23(1) (2008), 111-124. MR2380234 https://doi.org/10.4134/CKMS.2008.23.1.111
  2. S. Chauhan and B. D. Pant, Common fixed point theorem for weakly compatible mappings in Menger space, J. Adv. Res. Pure Math. 3(2) (2011), 107-119. MR2800793 https://doi.org/10.5373/jarpm.585.100210
  3. B. S. Choudhury and K. P. Das, A new contraction principle in Menger spaces, Acta Math. Sinica (English Series) 24(8) (2008), 1379-1386. MR2438308 (2009f:54053) https://doi.org/10.1007/s10114-007-6509-x
  4. B. S. Choudhury and K. P. Das, A coincidence point result in Menger spaces using a control function, Chaos, Solitons & Fractals 42(5) (2009), 3058-3063. MR2560014 (2010j:54062) https://doi.org/10.1016/j.chaos.2009.04.020
  5. R. Chugh, Sumitra and M. A. Khan, Common fixed point theorems for converse commuting maps in fuzzy metric spaces, Internat. Math. Forum 6(37) (2011), 1845-1851.
  6. J.-x. Fang, Common fixed point theorems of compatible and weakly compatible maps in Menger spaces, Nonlinear Anal. 71(5-6) (2009), 1833-1843. MR2524396 (2010g:54045) https://doi.org/10.1016/j.na.2009.01.018
  7. J.-x. Fang and Y. Gao, Common fixed point theorems under strict contractive conditions in Menger spaces, Nonlinear Anal. 70(1) (2009), 184-193. MR2468228 (2009k:47164) https://doi.org/10.1016/j.na.2007.11.045
  8. M. Imdad, J. Ali and M. Tanveer, Coincidence and common fixed point theorems for nonlinear contractions in Menger PM spaces, Chaos Solitons & Fractals 42(5) (2009), 3121-3129. MR2562820 (2010j:54064) https://doi.org/10.1016/j.chaos.2009.04.017
  9. G. Jungck, Compatible mappings and common fixed points, Internat. J. Math. Math. Sci. 9(4) (1986), 771-779. MR0870534 (87m:54122) https://doi.org/10.1155/S0161171286000935
  10. G. Jungck and B. E. Rhoades, Fixed points for set valued functions without continuity, Indian J. Pure Appl. Math. 29(3) (1998), 227-238. MR1617919
  11. S. Kumar and B. Fisher, A common fixed point theorem in fuzzy metric space using property (E.A.) and implicit relation, Thai J. Math. 8(3) (2010), 439-446. MR2763666 (2011m:54045)
  12. S. Kumar and B. D. Pant, Common fixed point theorems in probabilistic metric spaces using implicit relation and property (E.A), Bull. Allahabad Math. Soc. 25(2) (2010), 223-235. MR2779240
  13. Z. Lu, Common fixed points for converse commuting selfmaps on a metric space, Acta Anal. Funct. Appl. (Chinese) 4(3) (2002), 226-228. MR1956719
  14. Q.-k. Liu and X.-q. Hu, Some new common fixed point theorems for converse commuting multi-valued mappings in symmetric spaces with applications, Nonlinear Anal. Forum 10(1) (2005), 97-104. MR2162343 (2006d:47102)
  15. K. Menger, Statistical metrics, Proc. Nat. Acad. Sci. U.S.A. 28 (1942), 535-537. https://doi.org/10.1073/pnas.28.12.535
  16. D. Mihet, A note on a common fixed point theorem in probabilistic metric spaces, Acta Math. Hungar. 125(1-2) (2009), 127-130. MR2564425 https://doi.org/10.1007/s10474-009-8238-3
  17. S. N. Mishra, Common fixed points of compatible mappings in PM-spaces, Math. Japonica 36(2) (1991), 283-289. MR1095742
  18. B. D. Pant and S. Chauhan, A contraction theorem in Menger space, Tamkang J. Math. 42(1) (2011), 59-68. MR2815806
  19. B. D. Pant and S. Chauhan, Common fixed point theorems for two pairs of weakly compatible mappings in Menger spaces and fuzzy metric spaces, Sci. Stud. Res. Ser. Math. Inform. 21(2) (2011), 81-96. MR2956670
  20. B. D. Pant, S. Chauhan and Q. Alam, Common fixed point theorem in probabilistic metric space, Kragujevac J. Math. 35(3) (2011), 463-470. MR2881141
  21. H. K. Pathak and R. K. Verma, Integral type contractive condition for converse commuting mappings, Internat. J. Math. Anal. (Ruse) 3(24) (2009), 1183-1190. MR2604358
  22. H. K. Pathak and R. K. Verma, An integral type implicit relation for converse commuting maps, Internat. J. Math. Anal. (Ruse) 3(24) (2009), 1191-1198. MR2604359
  23. V. Popa, Some fixed point theorems for compatible mappings satisfying an implicit relation, Demonstratio Math. 32(1) (1999), 157-163. MR1691726
  24. V. Popa and D. Turkoglu, Some fixed point theorems for hybrid contractions satisfying an implicit relation, Stud. Cercet. Stint. Ser. Math. Univ. Bacau (1998), no. 8, 75-86. MR1993808
  25. R. Saadati, D. O'Regan, S. M. Vaezpour and J. K. Kim, Generalized distance and common fixed point theorems in Menger probabilistic metric spaces, Bull. Iranian Math. Soc. 35(2) (2009), 97-117. MR2642929
  26. B. Schweizer and A. Sklar, Statistical metric spaces, Pacific J. Math. 10 (1960), 313-334. MR0115153 (22 #5955) https://doi.org/10.2140/pjm.1960.10.313
  27. S. Sharma and B. Deshpande, On compatible mappings satisfying an implicit relation in common fixed point consideration, Tamkang J. Math. 33(3) (2002), 245-252. MR1923113 (2003f:47098)

Cited by

  1. Common Fixed Point Theorems for Conversely Commuting Mappings Using Implicit Relations vol.2013, 2013, https://doi.org/10.1155/2013/391474