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PROVING UNIFIED COMMON FIXED POINT THEOREMS
VIA COMMON PROPERTY (E-A) IN SYMMETRIC SPACES

Ahmed Hussein Soliman, Mohammad Imdad, and Mohammad Hasan

Abstract. A metrical common fixed point theorem proved for a pair of
self mappings due to Sastry and Murthy ([16]) is extended to symmet-
ric spaces which in turn unifies certain fixed point theorems due to Pant
([13]) and Cho et al. ([4]) besides deriving some related results. Some
illustrative examples to highlight the realized improvements are also fur-
nished.

1. Introduction with preliminaries

A symmetric d in respect of a non-empty set X is a function d : X ×X →
[0,∞) which satisfies d(x, y) = d(y, x) and d(x, y) = 0 ⇔ x = y (for all
x, y ∈ X). If d is a symmetric on a set X, then for x ∈ X and ε > 0, we
write B(x, ε) = {y ∈ X : d(x, y) < ε}. A topology τ(d) on X is given by the
sets U (along with empty set) in which for each x ∈ U , one can find some ε > 0
such that B(x, ε) ⊂ U. A set S ⊂ X is a neighbourhood of x ∈ X if and only
if there is U containing x such that x ∈ U ⊂ S. A symmetric d is said to be a
semi-metric if for each x ∈ X and for each ε > 0, B(x, ε) is a neighbourhood of
x in the topology τ(d). Thus a symmetric (resp. a semi-metric) space X is a
topological space whose topology τ(d) on X is induced by a symmetric (resp.
a semi-metric) d. Notice that limn→∞ d(xn, x) = 0 if and only if xn → x in
the topology τ(d). The distinction between a symmetric and a semi-metric is
apparent as one can easily construct a semi-metric d such that B(x, ε) need
not be a neighbourhood of x in τ(d). As symmetric spaces are not essentially
Hausdorff, therefore in order to prove fixed point theorms, some additional
axioms are required. The following axioms are relevant to this note which are
available in Galvin and Shore [5], Wilson [17], Hicks and Rhoades [6], Aliouche
[2] and Cho et al. [4]. From now on symmetric as well as semi-metric spaces
will be denoted by (X, d) whereas a nonempty arbitrary set will be denoted by
Y .
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(W3): [17] Given {xn}, x and y in X with d(xn, x) → 0 and d(xn, y) → 0
imply x = y.

(W4): [17] Given {xn}, {yn} and x in X with d(xn, x)→0 and d(xn, yn)→0
imply d(yn, x) → 0.

(HE): [2] Given {xn}, {yn} and x in X with d(xn, x) → 0 and d(yn, x) → 0
imply d(xn, yn) → 0.

(1C): [4] A symmetric d is said to be 1-continuous if limn→∞ d(xn, x) = 0
implies limn→∞ d(xn, y) = d(x, y).

(CC): [17] A symmetric d is said to be continuous if limn→∞ d(xn, x) = 0 and
limn→∞ d(yn, y) = 0 imply limn→∞ d(xn, yn) = d(x, y) where xn, yn

are sequences in X and x, y ∈ X.
Clearly, the continuity (i.e., (CC)) of a symmetric is a stronger property

than 1-continuity, i.e., (CC) implies (1C) but not conversely. Also (W4) implies
(W3) and (1C) implies (W3) but converse implications are not true. All other
possible implications amongst (W3), (1C) and (HE) are not true in general
whose nice illustration via demonstrative examples are available in Cho et al.
[4]. But (CC) implies all the remaining four conditions namely:(W3), (W4),
(HE) and (1C).

Recall that a sequence {xn} in a semi-metric space (X, d) is said to be a
d-Cauchy sequence if it satisfies the usual metric condition. Here, one needs to
notice that in a semi-metric space, Cauchy convergence criterion is not a nec-
essary condition for the convergence of a sequence but this criterion becomes
a necessary condition if semi-metric is suitably restricted (see Wilson [17]). In
[3], Burke furnished an illustrative example to show that a convergent sequence
in semi-metric spaces need not admit Cauchy subsequence. But he was able
to formulate an equivalent condition under which every convergent sequence in
semi-metric space admits a Cauchy subsequence. There are several concept of
completeness in semi-metric space, e.g. S-completeness, d-Cauchy complete-
ness, strong and weak completeness whose details are available in Wilson [17]
but we omit the details as such notions are not relevant to this note.

Lastly, we recall that a pair of self-mappings (f, g) defined on a symmetric
(semi-metric) space (X, d) is said to be

(i) compatible (cf. [8]) if limn→∞ d(fgxn, gfxn) = 0 whenever {xn} is a
sequence such that limn→∞ fxn = limn→∞ gxn = t for some t in X,

(ii) R-weakly commuting (cf. [12]) on X if d(fgx, gfx) ≤ Rd(fx, gx) for
some R > 0 where x varies over X,

(iii) pointwise R-weakly commuting (cf. [12]) on X if given x in X there
exists R > 0 such that d(fgx, gfx) ≤ Rd(fx, gx),

(iv) non-compatible (cf. [15]) if there exists some sequence {xn} such that
limn→∞fxn =limn→∞ gxn = t for some t in X but limn→∞(fgxn, gfxn)
is either non-zero or non-existent,

(v) tangential (or satisfying the property (E.A) (cf. [1, 16]) if there ex-
ists a sequence {xn} in X and some t ∈ X such that limn→∞ fxn =
limn→∞ gxn = t,



PROVING UNIFIED COMMON FIXED POINT THEOREMS 631

(vi) partially commuting (or weakly compatible or coincidentally commut-
ing (cf. [9])) if pair commutes on the set of coincidence points,

(vii) occasionally weakly compatible (in short OWC) (cf. [10]) if there is at
least one coincidence point x of (f, g) in X at which (f, g) commutes
and

(viii) let f and g be two selfmaps defined on a symmetric space (X, d). Then
f is said to be g-continuous (cf. [16]) if gxn → gx ⇒ fxn → fx
whenever {xn} is a sequence in X and x ∈ X.

Notice that pointwise R-weakly commutativity is equivalent to commutativ-
ity at coincidence points whereas compatible maps are pointwise R-commuta-
ting as they commute at their coincidence points. Interestingly, the class of
tangential maps contains as proper subsets the classes of compatible as well as
non-compatible maps and this is the motivation to use the tangential property
(or the property (E.A)) in place of compatibility or non-compatibility.

For the sake of completeness, we state the following theorems from Pant
[13], Sastry and Murthy [16], and Cho et al. [4] respectively.

Theorem 1.1 (cf. [13]). Let (f, g) be a pair of non-compatible pointwise R-
weakly commuting self-mappings of a metric space (X, d) satisfying:

(i) fX ⊂ gX,
(ii) d(fx, fy) ≤ kd(gx, gy) for all x, y ∈ X, k ≥ 0, and
(iii) d(fx, f2x) 6= max{d(fx, gfx), d(f2x, gfx)})

whenever the right hand side is non-zero. Then f and g have a common fixed
point.

A similar theorem also appears in V. Pant [14].
The following theorem due to Sastry and Murthy [16] generalizes Theorem

1.1.

Theorem 1.2 (cf. [16]). If (in the setting of Theorem 1.1) d(fx, fy)≤kd(gx, gy)
for all x, y ∈ X, k ≥ 0 holds and further

(i) the pair (f, g) is weakly commuting,
(ii) the pair (f, g) is tangential,
(iii) f is g-continuous,
(iv) either f(X) ⊂ g(X) or g(X) is closed.

Then f and g have a common fixed point.

In an attempt to offer consolidation to certain results proved for contractive
type mappings due to Imdad et al. [7], recently Cho et al. [4] proved two
interesting fixed point theorems for nonexpasive type of mappings in symmetric
spaces which run as follows:

Theorem 1.3 (cf. [4]). Let f, g, S, and T be self-mappings of a symmetric
(semi-metric) space (X, d) where d satisfies (W3) and (H.E). Suppose that

(i) fX ⊂ TX and gX ⊂ SX,
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(ii) the pair (g, T ) satisfies the property (E.A) (resp., (f, S) satisfies the
property (E.A)),

(iii) SX is a d-closed (τ(d)-closed) subset of X (resp., TX is a d-closed
(τ(d)-closed) subset of X) and

(iv) for any x, y ∈ X, d(fx, gy) ≤ m(x, y), where
m(x, y) = max

{
d(Sx, Ty),min[d(fx, Sx), d(gy, Ty)],min[d(fx, Ty), d(gy, Sx)]

}
.

Then, there exist u,w ∈ X such that fu = Su = gw = Tw.

Theorem 1.4 (cf. [4]). Let f, g, S, and T be self-mappings of a symmetric
(semi-metric) space (X, d) whereas d enjoys (1C) and (H.E). Suppose that

(i) fX ⊂ TX and gX ⊂ SX,
(ii) the pair (g, T ) enjoys the property (E.A) (resp., (f, S) enjoys the prop-

erty (E-A)),
(iii) SX is a d-closed (τ(d)-closed) subset of X (resp., TX is a d-closed

(τ(d)-closed) subset of X),
(iv) for any x, y ∈ X, d(fx, gy) ≤ m1(x, y), where

m1(x, y) = max
{

d(Sx, Ty), α[d(fx, Sx) + d(gy, Ty)], α[d(fx, Ty) + d(gy, Sx)]
}

0 < α < 1.
Then, there exist u,w ∈ X such that fu = Su = gw = Tw.

The purpose of this paper is to prove unified theorems in symmetric (semi-
metric) spaces which generalize various results due to Pant [13], V. Pant [14],
Sastry and Murty [16], Imdad et al. [7], Cho et al. [4] and some others.

2. Results

In what follows, we utilize the common property (E.A.) instead of the prop-
erty (E.A) to prove similar results. Firstly, on the lines of Liu et al. [11], we
adopt the following:

Definition 2.1. Let Y be an arbitrary set and X be a non-empty set equipped
with symmetric (semi-metric) d. Two pairs (f, S) and (g, T ) of mappings from
Y into X are said to share the common property (E.A.) if there exist two
sequences {xn} and {yn} in X such that

lim
n→∞

fxn = lim
n→∞

Sxn = lim
n→∞

gyn = lim
n→∞

Tyn = t

for some t ∈ X.

We prove our first result by making use of S-continuity of f and T -continuity
of g instead of utilizing some Lipschitzian or contractive type condition which
runs as follows:

Theorem 2.1. Let Y be an arbitrary nonempty set whereas X be another
nonempty set equipped with a symmetric (semi-metric) d which enjoys (W3)
(Hausdorffness of τ(d)) and (H.E). Let f, g, S, T : Y → X be four mappings
which satisfy the following conditions:
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(i) f is S-continuous and g is T -continuous,
(ii) the pair (f, S) and (g, T ) share the common property (E-A),
(iii) SX and TX are d-closed (τ(d)-closed) subset of X (resp., fX ⊂ TX

and gX ⊂ SX).
Then there exist u,w ∈ X such that fu = Su = Tw = gw.
Moreover, if Y = X along with

(iv) the pairs (f, S) and (g, T ) are weakly compatible and
(v) d(fx, gfx) 6= max {d(Sx, Tfx), d(gfx, Tfx), d(fx, Tfx), d(fx, Sx),

d(gfx, Sx)}, whenever the right hand side is non-zero.

Then f, g, S, and T have a common fixed point in X.

Proof. Notice that Y is an arbitrary set but fY lies in X, therefore a sequence
{fxn} in a semi-metric space (X, d) converges to a point fx with respect to
τ(d) if and only if d(fxn, fx) → 0. To substantiate this, suppose fxn → fx
and let ε > 0. Since S(fx, ε) is a neighborhood of fx, there exists U ∈ τ(d)
such that fx ∈ U ⊂ S (fx , ε). As fxn → fx, one can find a m ∈ N (where N
stands for the set of natural numbers) such that fxn ∈ U ⊂ S (fx , ε) for n ≥ m
implying thereby d(fxn, fx) < ε for n ≥ m, i.e., d(fxn, fx) → 0. The converse
part is obvious in view of the definition of τ(d).

Since the pairs (f, S) and (g, T ) share the common property (E.A), there
exist two sequence {xn} and {yn} in X and a t ∈ X such that

lim
n→∞

d(fxn, t) = lim
n→∞

d(Sxn, t) = lim
n→∞

d(gyn, t) = lim
n→∞

d(Tyn, t) = 0.

Since S(X) is a d-closed (or τ(d)-closed) subspace of X, one can find u ∈ X
such that Su = t which in turn yields that limn→∞ d(Sxn, Su) = 0. Now
using S-continuity of f along with the condition (W3), one finds d(fu, Su) = 0
yielding thereby fu=Su. Since fX ⊂ TX, there exists a point w ∈ X such
that fu = Tw. Similarly using the d-closedness of T (X) and T -continuity of
f along with condition (W3), we can show that gw = Tw yielding thereby
fu = Su = gw = Tw = t. Thus both the pairs have a point of coincidence.

Now using weak compatibility of the pairs (f, S) and (g, T ), we have fSu =
Sfu, ffu = fSu = Sfu = SSu and gTw = Tgw = ggw. Now, we assert that
fu = w. Otherwise employing (v), we have

d(fu, ffu)

= d(ffu, gw)

6= max
{

d(Sfu, Tw), d(gw, Tw), d(ffu, Tw), d(ffu, Sfu), d(gw, Sfu)
}

= max
{

d(ffu, fu), 0, d(ffu, fu), 0, d(ffu, fu)
}

= d(ffu, fu)

which is a contradiction yielding thereby fu = w. Similarly, in case u 6= gw,
we again arrive at a contradiction. Thus, fu = w = Su = Tw = gw = u, and
w is a common fixed point of f, g, S, and T.
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By restricting f ,g,S and T suitably, one can derive corollaries involving two
as well as three mappings. Here, it may be pointed out that any result for three
mappings is itself a new result. For the sake of brevity, we opt to mention just
one such corollary by restricting Theorem 2.1 to a triod of mappings f, S and
T which is still new and presents yet another sharpened form of Theorem 1.2
to symmetric (semi-metric) spaces besides admitting a non-self setting upto
coincidence points. ¤
Corollary 2.1. Let Y be an arbitrary set whereas (X, d) be a symmetric (semi-
metric) space equipped with a symmetric (semi-metric) d which enjoys (W3)
(Hausdorffness of τ(d)) and (H.E). Let f, S, T : Y → X be a triod of mappings
which satisfy the following conditions:

(i) f is S-continuous and f is T -continuous,
(ii) the pair (f, S) as well as (f, T ) is tangential,
(iii) SX and TX are d-closed (τ(d)-closed) subset of X (fX ⊂ TX ∩ SX).

Then there exist u,w ∈ X such that fu = Su = Tw.
Moreover, if Y = X alongwith
(iv) the pairs (f, S) and (f, T ) are weakly compatible and
(v) d(fx, f2x) 6= max

{
d(Sx, Tfx), d(f2x, Tfx), d(fx, Tfx), d(fx, Sx),

d(f2x, Sx)
}
, whenever the right hand side is non-zero,

then f, S, and T have a common fixed point in X .

Our next theorem is essentially inspired by the condition (iv) of Theorem
1.3 wherein a nonexpansive type condition is utilized. Here, we employ a
corresponding Lipschitzian type generalized condition.

Theorem 2.2. Let Y be an arbitrary set whereas (X, d) be a symmetric (semi-
metric) space equipped with a symmetric (semi-metric) d which enjoys (W3)
(Hausdorffness of τ(d)) and (HE). Let f, g, S, T : Y → X be four mappings
which satisfy the following conditions:

(i) the pair (g, T ) satisfies the property (E.A) (resp., (f, S) satisfies the
property (E.A)),

(ii) TX is a d-closed (τ(d)-closed) subset of X and gX ⊂ SX (resp., SX
is a d-closed (τ(d)-closed) subset of X and fX ⊂ TX) and

(iii) d(fx, gy) ≤ km(x, y), for any x, y ∈ X, where k ≥ 0 and m(x, y) is the
same as in Theorem 1.3.

Then there exist u,w ∈ Y such that fu = Su = Tw = gw.
Moreover, if Y = X along with
(iv) the pairs (f, S) and (g, T ) are weakly compatible and
(v) d(fx, gfx) 6= max

{
d(Sx, Tfx), d(gfx, Tfx), d(fx, Tfx), d(fx, Sx),

d(gfx, Sx)
}
, whenever the right hand side is non-zero,

then f, g, T, and S have a common fixed point.
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Proof. Since the pair (g, T ) satisfies the property (E.A), there exists a sequence
{xn} in X and a point t ∈ X such that limn→∞ d(Txn, t) = limn→∞ d(gxn, t) =
0. As SX is a d-closed (τ(d)-closed) subset of X and g(X) ⊂ S(X), one can al-
ways find a sequence {yn} in X such that gxn = Syn so that limn→∞ d(Syn, t) =
0. By the property (HE), limn→∞ d(gxn, Txn) = limn→∞ d(Syn, Txn) = 0.
Since SX is a d-closed (τ(d)-closed) subset of X and g(X) ⊂ S(X), there ex-
ists a point u ∈ X such that Su = t.
Now using condition (iii), we have

d(fu, gxn)

≤ k max
{

d(Su, Txn), min[d(fu, Su), d(gxn, Txn)], min[d(fu, Txn), d(gxn, Su)]
}

,

which on letting n → ∞, gives rise limn→∞ d(fu, gxn) = 0. Now appealing to
(W3)), we get fu = Su. Since fX ⊂ TX, there exists a point w ∈ X such that
fu = Tw. Now, we show that Tw = gw. To accomplish this, using (iii), we
have

d(fu, gw)

≤ k max
{

d(Su, Tw), min[d(fu, Su), d(gw, Tw)], min[d(fu, Tw), d(gw, Su)]
}

= k max
{

d(Tw, Tw),min[d(fu, fu), d(gw, Tw)],min[d(fu, fu), d(gw, gu)]
}

= 0

implying thereby fu = gw and hence in all fu = Su = gw = Tw which shows
that both the pairs have a point of coincidence each.
Now employing weak compatibility of the pairs (f, S) and (g, T ), we have fSu =
Sfu, ffu = fSu = Sfu = SSu and gTw = Tgw = ggw.

If fu 6= w, then from (v), we have either

d(fu, ffu)

= d(ffu, gw)

> max
{

d(Sfu, Tw), d(gw, Tw), d(ffu, Tw), d(ffu, Sfu), d(gw, Sfu)
}

= max
{

d(ffu, fu), 0, d(ffu, fu), 0, d(ffu, fu)
}

= d(ffu, fu)

or
d(fu, ffu)

= d(ffu, gw)

< max
{

d(Sfu, Tw), d(gw, Tw), d(ffu, Tw), d(ffu, Sgu), d(gw, Sfu)
}

= max
{

d(ffu, fu), 0, d(ffu, fu), 0, d(ffu, fu)
}

= d(ffu, fu)

which gives a contradiction (in both the cases). Similarly, if u 6= gw, we again
arrive at a contradiction. Thus, fu = w = Su = Tw = gw = u, and w is a
common fixed point of f, g, S, and T. ¤
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Remark 2.1. Choosing k=1 in Theorem 2.2, we drive a slightly sharpened form
of Theorem 1.3 as conditions on the ranges of involved mappings are relatively
lightened.

By restricting f , g, S and T suitably, one can derive corollaries for two as
well as three mappings. For the sake of brevity, we derive just one corollary by
restricting Theorem 2.2 to a triod of mappings which is yet another sharpened
and unified form of Theorem 1.1 due to Pant [13] (also relevant result in V.
Pant [14]) in symmetric spaces.

Corollary 2.2. Suppose that (in the setting of Theorem 2.2) d satisfies (W3)
and (HE). If f, S, T : Y → X are three mappings which satisfy the following
conditions:

(i) the pair (f, S) satisfies the property (E.A) (resp., (f, T ) satisfies the
property (E.A)),

(ii) SX is a d-closed (τ(d)-closed) subset of X and fX ⊂ TX (resp., TX
is a d-closed (τ(d)-closed) subset of X and fX ⊂ SX) and

(iii) d(fx, fy) ≤ km2(x, y) for any x, y ∈ X, where k ≥ 0 and
m2(x, y) = max

{
d(Sx, Ty),min[d(fx, Sx), d(fy, Ty)], min[d(fx, Ty), d(fy, Sx)]

}
,

then, there exist u,w ∈ Y such that fu = Su = Tw.
Moreover, if Y = X along with
(iv) the pairs (f, S) and (f, T ) are weakly compatible and
(v) d(fx, f2x) 6= max

{
d(Sx, Tfx), d(f2x, Tfx), d(fx, Tfx), d(fx, Sx), d(f2x, Sx)

}
,

whenever the right hand side is non-zero,
then f , S and T have a common fixed point.

Corollary 2.3. Let (X, d) be symmetric (semi metric) space wherein d satisfies
(W3) (Hausdoffness of τ(d)) and (H.E). If f, g, S, T : X → X are four self
mappings of X which satisfy the following conditions:

(i) the pair (f, S) satisfies the property (E.A) (resp., (g, T ) satisfies the
property (E.A)),

(ii) SX is a d-closed (τ(d)-closed) subset of X and fX ⊂ TX (resp., TX
is a d-closed (τ(d)-closed) subset of X and gX ⊂ SX).

(iii) d(fx, gy) < m(x, y) where m(x, y) is nonzero and carries the same
meaning as in Theorem 1.3.

Then there exist u,w ∈ X such that fu = Su = Tw = gw.
Moreover, if
(iv) the pairs (f, S) and (g, T ) are weakly compatible,

then f, g, S and T have a unique common fixed point.

Proof. Notice that all the conditions of Theorem 2.2 are satisfied except (v)
besides being Y = X. Therefore there exist u,w ∈ X such that fu = Su =
gw = Tw which on using weak comptability of the pairs yields that ffu =
fSu = Sfu = SSu and gTw = Tgw = TTw = ggw. If fu 6= w, then
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employing (iii), we have

d(fu, ffu) = d(ffu, gw)

< max
{

d(Sfu, Tw), min[(d(gw, Tw), d(ffu, Tw))],

min[(d(ffu, Sgu), d(gw, Sfu))]
}

= max{d(ffu, fu), 0, 0} = d(ffu, fu),

which is a contradiction. Thus fu = ffu = Sfu which shows that fu is a
common fixed point of f and S. Similarly using u 6= gw, one can show that gw
is a common fixed point of g and T . This concludes the proof. ¤

Our next theorem is essentially inspired by the condition (iv) of Theorem
1.4.

Theorem 2.3. Theorem 2.2 remains true if (W3) is replaced by (1C) whereas
condition (iii) of Corollary 2.3 is replaced by the following condition besides
retaining rest of the hypotheses:

d(fx, gy) ≤ km1(x, y)

for any x, y ∈ X, where k ≥ 0 with kα < 1 and m1(x, y) is the same as
Theorem 1.4.

Proof. The proof can be completed on the lines of proof of Theorem 2.2, hence
details are not included. ¤

By restricting f , g, S and T suitably, one can derive corollaries for two as
well as three mappings. For the sake of brevity, we derive just one corollary by
restricting Theorem 2.3 to a triod of mappings which is yet another sharpened
form of Theorem 1.1 due to Pant [13] (also relevant result in V. Pant [14]) in
symmetric spaces.

Corollary 2.4. Let (in the setting of Theorem 2.3) d satisfy (IC) and (HE).
Suppose that the triod of mappings f, S, T : Y → X satisfy the following
conditions:

(i) the pair (f, S) satisfies the property (E.A) (resp., (f, T ) satisfies the
property (E.A)),

(ii) SX is a d-closed (τ(d)-closed) subset of X and fX ⊂ TX (resp., TX
is a d-closed (τ(d)-closed) subset of X and fX ⊂ SX) and

(iii) d(fx, fy) ≤ km3(x, y),
m3(x, y) = max

{
d(Sx, Ty), α[d(fx, Sx) + d(fy, Ty)], α[d(fx, Ty) + d(fy, Sx)]

}

for any x, y ∈ X, where k ≥ 0, 0 < α < 1 together with kα < 1.
Then there exist u,w ∈ Y such that fu = Su = Tw.

Moreover, if Y = X together with
(iv) the pairs (f, S) and (f, T ) are weakly compatible and
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(v) d(fx, f2x) 6= max
{

d(Sx, Tfx), d(f2x, Tfx), d(fx, Tfx), d(fx, Sx),

d(f2x, Sx)
}
, whenever the right hand side is non-zero.

Then f, T, and S have a common fixed point.

Corollary 2.5. Let (X, d) be symmetric (semi-metric) space wherein d satisfies
(1C) (Hausdoffness of τ(d)) and (HE). If f, g, S and T are four self mappings
of X which satisfy the following conditions:

(i) the pair (f, S) satisfies the property (E.A) (resp., (g, T ) satisfies the
property (E.A)),

(ii) SX is a d-closed (τ(d)-closed) subset of X and fX ⊂ TX (resp., TX
is a d-closed (τ(d)-closed) subset of X and gX ⊂ SX).

(iii) d(fx, gy) < m1(x, y) where m1(x, y) carries the same meaning as in
Theorem 1.4. Then there exist u,w ∈ X such that fu = Su = Tw =
gw.

Moreover, if
(iv) the pairs (f, S) and (g, T ) are weakly compatible,

then f, g, S and T have a unique common fixed point.

Proof. The proof can be completed on the lines of Corollary 2.3, hence details
are not included. ¤

The following lemma enunciates a set of conditions which interrelates prop-
erty (E.A) with common property (E.A).

Lemma 2.4. Let Y be an arbitrary set whereas (X, d) be a symmetric (semi-
metric) space wherein d satisfies (W3) (Hausdorffness of τ(d))) and (H.E). If
f, g, S, T : Y → X are four mappings which satisfy the following conditions:

(i) the pair (f, S) (or (g, T )) satisfies the property (E.A.),
(ii) fX ⊂ TX or (gX ⊂ SX),
(iii) d(fx, gy) ≤ km(x, y),

for any x, y ∈ X, where k ≥ 0 and m(x, y) is the same as earlier,
then the pairs (f, S) and (g, T ) share the common property (E.A.).

Proof. Since the pair (f, S) enjoys the property (E.A.), one can find a sequence
{xn} ⊂ Y such that limn→∞ fxn = limn→∞ Sxn = t for some t ∈ X. Since
fX ⊂ TX, therefore for each {xn} one can find a {yn} ∈ X such that fxn =
Tyn which in turn yeilds that limn→∞ fxn = limn→∞ Sxn = limn→∞ Tyn = t.
Now we assert that limn→∞ gyn = t. If not, then using (iii), we have

d(fxn, gyn) ≤ k max
{

d(Sxn, T yn), min[d(fxn, Sxn), d(gyn, Tyn)],

min[d(fxn, T yn), d(gyn, Sxn)]
}

which on letting n →∞ and making use of (W3) and (H.E.), one gets

lim
n→∞

d(t, gyn) ≤ k max{0, 0, 0} ≤ 0
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yielding thereby limn→∞ gyn = t which shows that the pairs (f, S) and (g, T )
share the common property (E.A.). ¤

Lemma 2.5. Lemma 2.1 remains true if (W3) is replaced by (1C) whereas
condition (iii) of Lemma 2.1 is replaced by

d(fx, gy) ≤ km1(x, y)

for any x, y ∈ X, where k ≥ 0 with kα < 1 and m1(x, y) is the same as earlier.
besides retaining rest of the hypotheses.

Proof. The proof can be completed on the lines of Lemma 2.1, hence details
are not included. ¤

Theorem 2.6. Let f, g, S, T : Y → X be four mappings where Y is an arbitrary
non-empty set and X is a non-empty set equipped with a symmetric (semi-
metric) d wherein d satisfies (W3) (Hausdorffness of τ(d)) and (H.E). Suppose
that

(i) the pair (f, S) and (g, T ) share the common property (E.A.),
(ii) TX and SX are d-closed (τ(d) closed) subsets of X and
(iii) d(fx, gy) ≤ km(x, y),

for any x, y ∈ X, where k ≥ 0 and m(x, y) is the same as in Theorem
1.3.

Then the pairs (f, S) and (g, T ) have a point of coincidence each.
Moreover if Y = X along with,

(iv) the pairs (f, S) and (g, T ) are weakly compatible and
(v) d(fx, gfx) 6= max

{
d(Sx, Tfx), d(gfx, Tfx), d(fx, Tfx), d(fx, Sx),

d(gfx, Sx)
}
, whenever the right hand side is non-zero,

then f, g, S and T have a common fixed point.

Proof. Since the pairs (f, S) and (g, T ) share the common property (E.A.),
therefore there exists two sequences {xn} and {yn} in X such that

lim
n→∞

d(fxn, t) = lim
n→∞

d(Sxn, t) = lim
n→∞

d(gyn, t) = lim
n→∞

d(Tyn, t) = 0

for some t ∈ X, which due to property (H.E.), gives rise limn→∞ d(gyn, T yn) =
0 and limn→∞ d(fxn, Sxn) = 0. Since SX is a closed subset of X, hence
limn→∞ Sxn = t ∈ SX and hence there exists a point u ∈ X such that Su = t
which in turn yeilds that limn→∞ d(gyn, T yn) = 0, limn→∞ d(Su, Tyn) = 0 and
limn→∞ d(Su, gyn) = 0. Now we assert that fu = Su. If not, then using (iii),
we have

d(fu, gyn) ≤ k max
{

d(Su, Tyn), min[d(fu, Su), d(gyn, T yn)],

min[d(fu, Tyn), d(gyn, Su)]
}
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which on letting n →∞, and making use (W3) and (H.E.) reduces to

d(gu, t) ≤ 0

a contradiction, implying thereby fu = t. Hence fu = Su. Therefore, u is a
coincidence point of the pair (f, S).

Since TX is also a closed subset of X, hence limn→∞ Tyn = t ∈ TX
and also there exists a point w ∈ X such that Tw = t which in turn yeild
limn→∞ d(Sxn, Tw) = 0, limn→∞ d(fxn, Tw) = 0 and limn→∞ d(fxn, Sxn) =
0. Now we assest that gw = Tw. If not, then again using (iii), we have

d(fxn, gw) ≤ k max
{

d(Sxn, Tw),min[d(fxn, Sxn), d(gw, Tw)],

min[d(fxn, Tw), d(gw, Sxn)]
}

which on letting n →∞, and making use of (W3) and (H.E.) reduces to

lim
n→∞

d(fxn, gw) = 0, i.e., ( lim
n→∞

fxn = gw)

a contradiction, implying thereby gw = t. Hence gw = Tw, which shows that
w is a coincidence point of the pair (g, T ) and in all fu = Su = gw = Tw = t.
The rest of the proof is similar to that of Theorem 2.1. hence it is omitted. ¤

Theorem 2.7. Theorem 2.4 remains true if condition (iii) (of Theorem 2.4)
is replaced by

d(fx, gy) ≤ km1(x, y)
for all x, y ∈ Y, kα < 1 with m1(x, y) is the same as earlier whereas (W3) is
replaced by (1C) besides retaining rest of the hypotheses.

Proof. The proof can be completed on the lines of proof of Theorem 2.4, hence
details are not included. ¤

Theorem 2.8. Let Y be an arbitrary set whereas (X, d) be a symmetric (semi-
metric) space equipped with a symmetric (semi-metric) d which enjoys (W3)
and (H.E). Let f, g, S, T : Y → X be four mappings which satisfy the following
conditions:

(i) the pair (f, S) (or (g, T )) satisfies property (E.A.),
(ii) fX ⊂ TX or (gX ⊂ SX)and
(iii) d(fx, gy) ≤ km(x, y) for any x, y ∈ X, where k ≥ 0 and m(x, y) is the

same as earlier.
Then the pairs (f, S) and (g, T ) have a point of coincidence.

Moreover, if Y = X along with
(iv) the pairs (f, S) and (f, T ) are weakly compatible and
(v) d(fx, gfx) 6= max

{
d(Sx, Tfx), d(gfx, Tfx), d(fx, Tfx), d(fx, Sx),

d(gfx, Sx)
}
, whenever the right hand side is non-zero,

then f, g, S and T have a common fixed point.
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Proof. Notice that all the conditions of Lemma 2.1 are satisfied, therefore the
pairs (f, S) and (g, T ) share the common property (E.A), i.e., there exist two
sequences {xn}, {yn} ⊂ Y such that

lim
n→∞

f(xn) = lim
n→∞

S(xn) = lim
n→∞

g(yn) = lim
n→∞

Tyn = t ∈ X.

If S(X) is closed subset of X, then in view of Theorem 2.2, the pair (f, S) has
a point of coincidence say u, i.e., fu = Su. Since fX ⊂ TX and fu ∈ fX,
there exists w ∈ Y such that fu = Tw. Now we assert that gw = Tw. If not,
then using (iii) we have

d(fxn, gw) ≤ k max
{

d(Sxn, Tw), min[d(fxn, Sxn), d(gw, Tw)],

min[d(Sxn, gw), d(Tw, fxn)]
}

which on making n →∞, reduces to

d(t, gw) ≤ 0

which is a contradiction yielding thereby gw = Tw. The rest of the proof is
similar to that of Theorem 2.4. hence it is omitted. ¤

Theorem 2.9. Theorem 2.6. remains true if (W3) is replaced by (1C) whereas
condition (iii) (of Theorem 2.6) is replaced by

d(fx, gy) ≤ km1(x, y)

for all x, y ∈ Y where m1(x, y) is the same as earlier with kα < 1 besides
retaining rest of the hypothesis.

Proof. Proceeding on the lines of the proof of Theorem 2.4, one can complete
the proof of this theorem, hence details are not included. ¤

3. Illustrative examples

Now we furnish examples demonstrating the validity of the hypotheses and
degree of generality of our results over some recently established results due to
Cho et al. [4] and others. Our first example demonstrates Theorem 2.1.

Example 3.1. Consider X = [2, 20] equipped with the symmetric d(x, y) =
(x− y)2.

In order to illustrate Theorem 2.1, we set f = g and S = T . Define f, S :
X → X as

f(2) = 2, f(x) = 7 if 2 < x ≤ 5, f(x) = 2 if x > 5,

S(2) = 2, S(x) = 7 if 2 < x ≤ 5, S(x) =
x + 1

3
if x > 5.
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Then the pair (f, S) satisfies all the conditions of Theorem 2.1 and has a coin-
cidence at x = 2 which also remains a common fixed point of the pair. Notice
that f is not Lipschetzian whenever x ∈ (2, 5] and y = 20 as (with k ≥ 0)

d(f5, f20) ≤ k d(S5, S20) ⇒ 25 ≤ 0

which is a contradiction. Here it is interesting to note that the condition

d(fx, ffx)

6= max
{

d(Sx, Sfx), d(fx, Sx), d(ffx, Sfx), d(fx, Sfx), d(Sx, ffx)
}

is not satisfed:(
e.g. x = 5, d(f5, ff5) 6=max

{
d(S5, Sf5), d(f5, S5), d(ff5, Sf5), d(f5, Sf5),

d(S5, ff5)
}
⇒ d(7, 2) 6= max{d(7, 8

3 ), d(7, 7), d(2, 8
3 ), d(7, 8

3 ), d(7, 2)} ⇒ 25 6=
25

)
by this example whenever right hand side of above inequality is nonzero.

This confirms that condition (v) of Theorem 2.1 is only a necessary condition
but not sufficient.

The following example exhibits that the axioms (H.E) and (1C) are necessary
in Theorem 2.3. The idea of this example essentially appears in Cho et al. [4].

Example 3.2. Consider X = [0,∞) and define a symmetric d on X as

d(x, y) =





| x− y |, if x 6= 0, y 6= 0

1
x

, if x 6= 0, y = 0

1
y

, if y 6= 0, x = 0.

This d does not satisfy (H.E) and (1C). Set Y = X, f = g, S = T and define
f and S as follows:

fx = x, x ≥ 0 and

Sx =





x
3 , x > 0

0, x = 0

In order to verify d(fx, fy) ≤ kn1(x, y) where n1(x, y) denotes the restriction
of m1(x, y) to mappings f and S, we distinguish two cases:
Case (i). If x > 0, y > 0, then

d(fx, fy) =| x− y |= 3| x− y

3
| = 3d(Sx, Sy) ≤ 3m1(n, y)

where m1(n, y) is the same as earlier.
Case (ii). If x = 0 and y > 0, then
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d(fx, fy) = d(0, y) =
1
y

=
1
4

4
y

=
1
4

[
3
y

+
1
y

]

=
[
1
4

(
3
y

+
1
y

)]
=

[
1
4
(d(fx, Sy) + d(Sx, fy))

]

< 3m1(n, y)

which shows that the condition (iii) of Theorem 2.3 is satisfied (for all x, y ∈ X)
with k = 3 , α = 1

4 and m1(n, y) is same as earlier. Also the pair (f, S) enjoys
the property (E-A) (e.g. xn = n) whereas f(X) is d-closed (or τ(d)) closed
subset of X. Thus all the conditions of Theorem 2.3 are satisfied.

Notice that the pair (f, S) has no coincidence or common fixed point.
The following example demostrates Theorem 2.4.

Example 3.3. Consider X = [−1, 1] equipped with the symmetric d(x, y) =
(x− y)2 which satisfies (W3) and (HE). Define self mappings f, g, S and T on
X as f(−1) = f1 = 3/5, fx = x/4, −1 < x < 1,

g(−1) = g1 = 3/5, gx = −x/4, −1 < x < 1,

S(−1) = −1/8, Sx = x/8, −1 < x < 1, and S1 = −1/8, and

T (−1) = −1/8, Tx = −x/8, −1 < x < 1, and T1 = 1/8.

Consider sequences {xn = 1
n} and {yn = −1

n } in X. Clearly,

lim
n→∞

fxn = lim
n→∞

Sxn = lim
n→∞

gyn = lim
n→∞

Tyn = 0

which show that pairs (f, S) and (g, T ) share the common property (E.A).
Notice that f(X) = g(X) = { 3

5} ∪ (−1
4 , 1

4 ) 6⊂ S(X) = T (X) = [−1
8 , 1

8 ]. In order
to verify conditon (iii) of Theorem 1.3 notice that

d(fx, gy) = (x/4 + y/4)2 = ((x + y)/4)2

= 4((x + y)/8)2 ≤ 4 d(Sx, Ty) ≤ 4 m(x, y)

where m(x, y) is the same as earlier.
Therefore, all the conditions of Theorem 2.4 are satisfied and 0 is a common

fixed point of the pairs (f, S) and (g, T ) which is also their coincidence point
as well.

Here it is worth noting that Theorems 1.3. and 1.4. due to Cho et al. [4]
can be used only when k is at the most 1 whereas our results are valid for any
k ≥ 0. Notice that in the present example k is 4 and hence Theorems 1.3 and
1.4 due to Cho et al. [4] can not work in the context of this example which
substantiate the utility of our results over earlier ones.
Our last example highlights the non-uniqueness of common fixed points in the
present context.

Example 3.4. In order to highlight the non-uniqueness of common fixed point
in Theorems 2.1, consider X = {0, 1, 1/2, 1/3, . . . 1/n, . . .} under the symmetric
d(x, y) = e|x−y| − 1. Set f = S, g = T and define f and g on X by f(1/n) =
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1/n2, g(1/n) = 1/n3, f(0) = 0 = g(0). Clearly f(X) 6⊂ g(X) but g(X) is a
closed subset of X. Also, rest of the conditions of Theorem 2.1 are trivially
satisfied. Notice that f and g have two common fixed points namely: 0 and 1.
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