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APPROXIMATION OF NEAREST COMMON FIXED POINTS

OF ASYMPTOTICALLY I-NONEXPANSIVE MAPPINGS IN

BANACH SPACES

Yeol Je Cho, Nawab Hussain, and Hemant Kumar Pathak

Abstract. In this paper, we introduce a new class of uniformly point-
wise R-subweakly commuting self-mappings and prove several common
fixed point theorems and best approximation results for uniformly point-

wise R-subweakly commuting asymptotically I-nonexpansive mappings in
normed linear spaces. We also establish some results concerning strong
convergence of nearest common fixed points of asymptotically I-non-
expansive mappings in reflexive Banach spaces with a uniformly Gâteaux

differentiable norm. Our results unify and generalize various known re-
sults given by some authors to a more general class of noncommuting
mappings.

1. Introduction and preliminaries

We first introduce some definitions for our main results in this paper.

Let M be a subset of a normed linear space (X, ∥ · ∥). The set

PM (u) = {x ∈ M : ∥x− u∥ = dist(u,M)}

is called the set of best approximants to u ∈ X out of M, where

dist(u,M) = inf{∥y − u∥ : y ∈ M}.

We shall use N to denote the set of positive integers, cl(S) to denote the closure
of a set S and wcl(S) to denote the weak closure of a set S. Let I : M → M be
a mapping. A mapping T : M → M is called an I-contraction if there exists
0 ≤ k < 1 such that

∥Tx− Ty∥ ≤ k ∥Ix− Iy∥, ∀x, y ∈ M.
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If k = 1, then T is said to be I-nonexpansive. The mapping T is said to be
asymptotically I-nonexpansive if there exists a sequence {kn} of real numbers
with kn ≥ 1 and limn→∞ kn = 1 such that

∥Tnx− Tny∥ ≤ kn ∥Ix− Iy∥, ∀x, y ∈ M, n ≥ 1.

The mapping T is said to be uniformly asymptotically regular ([4, 8]) on M
if, for each η > 0, there exists N(η) = N such that

∥Tnx− Tn+1x∥ < η, ∀n ≥ N, x ∈ M.

The set of fixed points of T (resp., I) is denoted by F (T ) (resp., F (I)). A
point x ∈ M is a coincidence point (resp., common fixed point) of two mappings
I and T if Ix = Tx (resp., x = Ix = Tx). The set of coincidence points of I
and T is denoted by C(I, T ). Let I and T be self-mappings of a metric space
(X, d). The mappings I and T are commuting if

ITx = TIx, ∀x ∈ X.

Sessa [35] defined the concept of weakly commuting mappings, i.e., the self-
mappings I and T on X are said to be weakly commuting if

d(ITx, TIx) ≤ d(Tx, Ix), ∀x ∈ X,

and, as a generalization of commuting mappings, Jungck [18] defined I and T
to be compatible on X if

lim
n→∞

d(ITxn, T Ixn) = 0

whenever {xn} is a sequence in X such that limn→∞ Ixn = limn→∞ Txn = t
for some t ∈ X.

It is easy to show that commuting mappings are weakly commuting and
weakly commuting mappings are compatible. We can find some examples to
show these implications (see [18, 19, 35]).

Definition 1.1 ([19]). I and T are said to be weakly compatible on X if they
commute at their coincidence points, i.e., if Iu = Tu for some u ∈ X, then
ITu = TIu.

Definition 1.2 ([25]). I and T are said to be R-weakly commuting on X if
there exists R > 0 such that

d(ITx, TIx) ≤ Rd(Tx, Ix), ∀x ∈ X.

Definition 1.3 ([26]). I and T are pointwise R-weakly commuting on X if for
given x ∈ X, there exists R > 0 such that

d(ITx, TIx) ≤ Rd(Tx, Ix).

It was proved in [26] that pointwise R-weak commutativity is equivalent
to commutativity at coincidence points, i.e., I and T are pointwise R-weakly
commuting if and only if they are weakly compatible.
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The ordered pair (T, I) of two self-mappings on a metric space (X, d) is called
a Banach operator pair if the set F (I) is T -invariant, namely, T (F (I)) ⊆ F (I).
Obviously, commuting pair (T, I) is a Banach operator pair, but not conversely
in general. See, for details, [1, 6, 13, 15, 28].

Ćirić [9] introduced and studied self-mappings on metric space X satisfying

d (Tx, Ty) ≤ λ max {d (x, y) , d (x, Tx) , d (y, Ty) , d (x, Ty) , d (y, Tx)}
for all x, y ∈ X, where 0 < λ < 1. Further, this investigation was developed by
Hussain and Jungck [16], Jungck and Hussain [20], O’Regan and Hussain [24]
and many other mathematicians.

A set M is said to be q-starshaped with q ∈ M if the segment

[q, x] = {(1− k)q + kx : 0 ≤ k ≤ 1}
joining q to x is contained in M for all x ∈ M. Suppose that M is q-starshaped
with q ∈ F (I) and is both T and I-invariant. Then the mappings T and I are
said to be:

(1) Cq-commuting ([3, 17]) if ITx = TIx for all x ∈ Cq(I, T ), where
Cq(I, T ) = ∪{C(I, Tk) : 0 ≤ k ≤ 1} and Tkx = (1− k)q + kTx,

(2) pointwise R-subweakly commuting ([24]) if for given x ∈ M , there exists
a real number R > 0 such that

∥ITx− TIx∥ ≤ R · dist(Ix, [q, Tx]),
(3) R-subweakly commuting on M (see [16, 17]) if there exists a real number

R > 0 such that

∥ITx− TIx∥ ≤ R · dist(Ix, [q, Tx]), ∀x ∈ M,

(4) uniformly R-subweakly commuting on M \ {q} (see [4]) if there exists a
real number R > 0 such that

∥ITnx− TnIx∥ ≤ R · dist(Ix, [q, Tnx]), ∀x ∈ M \ {q}, n ∈ N.

Note that Cq-commuting mappings are pointwise R-subweakly commut-
ing and pointwise R-subweakly commuting mappings are weakly compatible,
but not conversely in general and R-subweakly commuting mappings are Cq-
commuting, but the converse does not hold in general (see, for examples,
[3, 20]).

The class of asymptotically nonexpansive mappings was introduced by Goe-
ble and Kirk [11] and, further, studied by various authors (see [7, 23, 33, 34, 37,
38]). Recently, Beg et al. [4] have proved strong convergence of the sequence
of almost fixed points xn = (1− µn)q + µnT

nxn to the common fixed point of
asymptotically I-nonexpansive mapping T using the uniform R-subweak com-
mutativity of {I, T}.

In this paper, we introduce a more general class of uniformly pointwise
R-subweakly commuting self-mappings which properly contains the class of
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uniformly R-subweakly commuting mappings. For this new class, we establish
some common fixed point theorems and approximation results. We also study
the strong convergence of nearest common fixed points of asymptotically I-
nonexpansive mappings with and without the uniform pointwise R-subweak
commutativity of the mappings I and T in a reflexive Banach space with a
uniformly Gâteaux differentiable norm. Our results extend and improve the
recent results given in [2, 3, 4, 7, 8, 14, 23, 28, 29, 33, 34, 37] to uniformly
pointwise R-subweakly commuting asymptotically I-nonexpansive mappings.

2. Common fixed points and approximation results

O’Regan and Hussain [24] coined the idea of more general mappings called
pointwise R-subweakly commuting mappings. We begin with the definition of
uniformly pointwise R-subweakly commuting mappings.

Definition 2.1. Let M be a q-starshaped subset of a normed linear space X.
Let I, T : M → M be mappings with q ∈ F (I). Then I and T are said to be
uniformly pointwise R-subweakly commuting if for given x ∈ M \ {q}, there
exists a real number R > 0 such that

∥ITnx− TnIx∥ ≤ R · dist(Ix, [q, Tnx]), ∀n ∈ N.

It is clear from Definition 2.1 that uniformly pointwiseR-subweakly commut-
ing mappings on M are pointwise R-subweakly commuting, but not conversely
in general as the following example shows:

Example 2.2. Let X = R with usual norm and M = [1,∞). Let Tx = 2x−1,
Ix = x2 for all x ∈ M and let q = 1. Then M is q-starshaped with Iq =
q, Cq(I, T ) = {1} and Cq(I, T

2) = [1, 3]. Note that I and T are pointwise
R-subweakly commuting mappings, but not uniformly pointwise R-subweakly
commuting because ∥IT 2x − T 2Ix∥ ̸= 0 for all x ∈ (1, 3] whereas (1, 3] being
subset of Cq(I, T

2) implies that dist(Ix, [q, T 2x]) = 0 for all x ∈ (1, 3].

Uniformly R-subweakly commuting mappings are uniformly pointwise R-
subweakly commuting, but the converse does not hold in general. To see this,
we consider the following example:

Example 2.3. Let X = R with usual norm and M = [0,∞). Let Ix = x
2 if

0 ≤ x < 1, Ix = x if x ≥ 1 and Tx = 1
2 if 0 ≤ x < 1, Tx = x2 if x ≥ 1. Then M

is 1-starshaped with I1 = 1 and Cq(I, T ) = [1,∞] and Cq(I, T
n) ⊆ [1,∞] for

each n > 1. Clearly, I and T are uniformly pointwise R-subweakly commuting,
but not R-weakly commuting for all R > 0 (see [3]). Thus I and T are neither
R-subweakly commuting nor uniformly R-subweakly commuting mappings.

The following result improves and extends Lemma 3.3 in [4]:

Lemma 2.4. Let I and T be self-mappings on a nonempty q-starshaped subset
M of a normed linear space X. Assume that q ∈ F (I), I is affine, T and I are
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uniformly pointwise R-subweakly commuting mappings satisfying the following
condition:

(2.1)

∥Tnx− Tny∥
≤ kn ·max{∥Ix− Iy∥, dist(Ix, [Tnx, q]),dist(Iy, [Tny, q]),

dist(Ix, [Tny, q]), dist(Iy, [Tnx, q]}, ∀x, y ∈ M, n ≥ 1,

where {kn} is a sequence of real numbers with kn ≥ 1 and limn→∞ kn = 1. For
each n ≥ 1, define a mapping Sn on M by

Snx = (1− µn)q + µnT
nx, ∀x ∈ M,

where µn = λn

kn
and {λn} is a sequence of numbers in (0, 1) such that limn→∞ λn

= 1. Then, for each n ≥ 1, Sn and I have exactly one common fixed point
xn ∈ M such that

Ixn = xn = (1− µn)q + µnT
nxn,

provided one of the following conditions hold:

(i) clT (M) ⊂ I(M) and, for each n ≥ 1, clSn(M) is complete,
(ii) wclT (M) ⊂ I(M) and, for each n ≥ 1, wclSn(M) is complete.

Proof. Since I and T are uniformly pointwise R-subweakly commuting and I
is affine with Iq = q, it follows that, for given x ∈ M ,

∥ISnx− SnIx∥ = ∥(1− µn)q + µnIT
nx− (1− µn)q − µnT

nIx∥
= µn∥ITnx− TnIx∥
≤ µnR · dist(Ix, [q, Tnx])

≤ µnR ∥Ix− Snx∥.

Hence I and Sn are pointwise µnR-weakly commuting for all n ≥ 1. Also, by
(2.1), we have

∥Snx− Sny∥
= µn∥Tnx− Tny∥
≤ λn ·max{∥Ix− Iy∥ , dist(Ix, [Tnx, q]), dist(Iy, [Tny, q]),

dist(Ix, [Tny, q]), dist(Iy, [Tnx, q])}
≤ λn max{∥Ix− Iy∥, ∥Ix− Snx∥ , ∥Iy − Sny∥ ,

∥Ix− Sny∥ , ∥Iy − Snx∥}, ∀x, y ∈ M, n ≥ 1.

(i) Since M is q-starshaped, clT (M) ⊂ I(M), I is affine and Iq = q and
so, for each n ≥ 1, clSn(M) ⊂ I(M). By Theorem 2.1 in [17, 20], for each
n ≥ 1, there exists xn ∈ M such that xn = Ixn = Snxn. Thus, for each n ≥ 1,
M ∩ F (Sn) ∩ F (I) ̸= ∅.

(ii) Since M is q-starshaped, wclT (M) ⊂ I(M), I is affine and Iq = q and so
wclSn(M) ⊂ I(M) for each n ≥ 1. By Theorem 2.1 in [17, 20], the conclusion
follows. This completes the proof. □
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The following result extends the recent results (Theorems 2.2-2.4) due to Al-
Thagafi and Shahzad [3] and the corresponding results in Hussain and Rhoades
[17] and O’Regan and Hussain [24] to asymptotically I-nonexpansive mappings.

Theorem 2.5. Let I and T be self-mappings on a q-starshaped subset M of a
normed linear space X. Assume that q ∈ F (I), I is affine and T is uniformly
asymptotically regular and asymptotically I-nonexpansive. If T and I are uni-
formly pointwise R-subweakly commuting on M , then M ∩ F (T ) ∩ F (I) ̸= ∅
provided one of the following conditions holds:

(i) clT (M) ⊂ I(M), T is continuous and clT (M) is compact,
(ii) X is complete, wclT (M) ⊂ I(M), wclT (M) is weakly compact, I is

weakly continuous and I − T is demiclosed at 0.

Proof. (i) Notice that compactness of clT (M) implies that clSn(M) is compact
and hence complete. From Lemma 2.4, for each n ≥ 1, there exists xn ∈ M
such that xn = Ixn = (1−µn)q+µnT

nxn and so hence xn ∈ Cq(I, T
n). Since

T (M) is bounded, it follows that ∥xn − Tnxn∥ = (1 − µn)∥Tnxn − q∥ → 0 as
n → ∞.

Now, we have

(2.2)

∥xn − Txn∥
= ∥xn − Tnxn∥+ ∥Tnxn − Tn+1xn∥+ ∥Tn+1xn − Txn∥
≤ ∥xn − Tnxn∥+ ∥Tnxn − Tn+1xn∥+ k1∥ITnxn − Ixn∥.

Since T and I are uniformly pointwise R-subweakly commuting, I commutes
with Tn on Cq(I, T

n). Also, since xn ∈ Cq(I, T
n), xn = Ixn and T is uniformly

asymptotically regular, we have, from (2.2),

∥xn − Txn∥ ≤ ∥xn − Tnxn∥+ ∥Tnxn − Tn+1xn∥+ k1∥Tnxn − xn∥ → 0

as n → ∞. Thus xn − Txn → 0 as n → ∞. Since clT (M) is compact, there
exists a subsequence {Txm} of {Txn} such that Txm → x0 as m → ∞. By
the continuity of T , we have Tx0 = x0. Since T (M) ⊂ I(M), it follows that
x0 = Tx0 = Iy for some y ∈ M. Moreover, we have

∥Txm − Ty∥ ≤ k1∥Ixm − Iy∥ = k1∥xm − x0∥.
Taking the limit as m → ∞, we get Tx0 = Ty. Thus Tx0 = Iy = Ty = x0.
Since I and T are uniformly pointwise R-subweakly commuting on M and
y ∈ C(I, T ),

∥ Tx0 − Ix0 ∥=∥ TIy − ITy ∥= 0.

Therefore, we have x0 ∈ F (T ) ∩ F (I) and so M ∩ F (T ) ∩ F (I) ̸= ∅.
(ii) The weak compactness of wclT (M) implies that wclSn(M) is weakly

compact and hence complete due to completeness of X (see [3, 20]). From
Lemma 2.4, for each n ≥ 1, there exists xn ∈ M such that xn = Ixn =
(1 − µn)q + µnT

nx. As in (i), it follow that ∥xn − Txn∥ → 0 as n → ∞. The
weak compactness of wclT (M) implies that there is a subsequence {xm} of
{xn} converging weakly to y ∈ M as m → ∞. By the weak continuity of I, we
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have Iy = y. Also, we have Ixm − Txm = xm − Txm → 0 as m → ∞. If I − T
is demiclosed at 0, then Iy = Ty. Thus M ∩ F (T ) ∩ F (I) ̸= ∅. This completes
the proof. □

Corollary 2.6 ([4]). Let I and T be self-mappings on a q-starshaped subset
M of a normed linear space X. Assume that clT (M) ⊂ I(M), q ∈ F (I), I
is affine, T is continuous, uniformly asymptotically regular and asymptotically
I-nonexpansive. If clT (M) is compact, T and I are uniformly R-subweakly
commuting on M , then M ∩ F (T ) ∩ F (I) ̸= ∅.

Remark 1. Notice that the conditions of the continuity and linearity of I are
not needed in Theorem 3.4 of Beg et al. [4].

Corollary 2.7 ([3]). Let I and T be self-mappings on a q-starshaped subset
M of a normed linear space X. Assume that T and I are Cq-commuting on
M , q ∈ F (I), I is affine and T is I-nonexpansive. Then M ∩F (T )∩F (I) ̸= ∅
provided one of the following conditions holds:

(i) clT (M) ⊂ I(M), T is continuous and cl(T (M)) is compact,
(ii) X is complete, I is weakly continuous, wcl(T (M)) is weakly compact,

wclT (M) ⊂ I(M) and either I − T is demiclosed at 0 or X satisfies
Opial’s condition.

Corollary 2.8 ([2, 21]). Let I and T be self-mappings on a q-starshaped subset
M of a normed linear space X. Assume that T and I are commuting on M ,
q ∈ F (I), I is affine and T is I-nonexpansive. Then F (T )∩F (I) ̸= ∅ provided
one of the conditions in corollary 2.7 holds.

The following result extends Theorem 3.2 in Al-Thagafi [2], Theorems 3.1-
3.3 in [3], Theorem 7 of Jungck and Sessa [21], the main results in Pathak et
al. [27] and Singh [36] to the asymptotically I-nonexpansive mapping T .

Theorem 2.9. Let M be subset of a normed linear space X and I, T : X → X
be mappings such that u ∈ F (I)∩F (T ) for some u ∈ X and T (∂M ∩M) ⊆ M.
Suppose that PM (u) is q-starshaped, q ∈ F (I), I is affine on PM (u),

∥Tx− Tu∥ ≤ ∥Ix− Iu∥, ∀x ∈ PM (u)

and I(PM (u)) = PM (u). If T and I are uniformly pointwise R-subweakly com-
muting on PM (u) and T is uniformly asymptotically regular and asymptotically
I-nonexpansive, then PM (u) ∩ F (I) ∩ F (T ) ̸= ∅ provided one of the following
conditions is satisfied:

(i) PM (u) is closed, T is continuous on PM (u) and cl(T (PM (u))) is com-
pact,

(ii) X is complete, PM (u) is weakly closed, wcl(T (PM (u))) is weakly com-
pact, I is weakly continuous and I − T is demiclosed at 0.

Proof. Let x ∈ PM (u). Then x ∈ ∂M∩M. Since T (∂M∩M) ⊆ M, Tx must be
in M. Also, since Ix ∈ PM (u), u ∈ F (I) ∩ F (T ) and I, T satisfy the condition
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∥Tx− Tu∥ ≤ ∥Ix− Iu∥, we have

∥Tx− u∥ = ∥Tx− Tu∥ ≤ ∥Ix− Iu∥ = ∥Ix− u∥ = dist(u,M).

Thus Tx ∈ PM (u) and so cl(T (PM (u))) ⊆ I(PM (u)) = PM (u) if PM (u) is
closed and wcl(T (PM (u))) ⊆ I(PM (u)) = PM (u) whenever PM (u) is weakly
closed. Therefore, the result now follows from Theorem 2.5. This completes
the proof. □

We denote by ℑ0 the class of closed convex subsets of X containing 0. For
any M ∈ ℑ0, we define

Mu = {x ∈ M : ∥x∥ ≤ 2∥u∥}, CI
M (u) = {x ∈ M : Ix ∈ PM (u)}.

It is clear that PM (u) ⊂ Mu ∈ ℑ0 (see [2, 16, 17]).

The following result extends Theorems 4.1 and 4.2 in [2, 3] and the corre-
sponding results in [16, 17].

Theorem 2.10. Let I, T be self-mappings of a normed linear space X with
u ∈ F (I) ∩ F (T ) and M ∈ ℑ0 such that T (Mu ) ⊆ I(M) ⊆ M. Suppose that
∥Ix − u∥ = ∥x − u∥ for all x ∈ Mu, T is continuous on Mu and T satisfies
the condition ∥Tx− u∥ ≤ ∥Ix− u∥ for all x ∈ Mu. If one of the following two
conditions is satisfied:

(a) cl(I(Mu)) is compact,
(b) cl(T (Mu)) is compact.

Then we have the following:
(1) PM (u) is nonempty, closed and convex,
(2) T (PM (u)) ⊆ I(PM (u)) ⊆ PM (u) provided that ∥Ix − u∥ = ∥x − u∥ for

all x ∈ CI
M (u) and I(PM (u)) is closed,

(3) PM (u) ∩ F (I) ∩ F (T ) ̸= ∅ provided that ∥Ix − u∥ = ∥x − u∥ for all
x ∈ CI

M (u), I(PM (u)) is closed, I is affine with q ∈ F (I), I and T are uniformly
pointwise R-subweakly commuting and T is uniformly asymptotically regular
and asymptotically I-nonexpansive on PM (u).

Proof. (1) (a) We will follow the arguments used in [20, 24]. We may assume
that u /∈ M . If x ∈ M \Mu, then ∥x∥ > 2∥u∥. Note that

∥x− u∥ ≥ ∥x∥ − ∥u∥ > ∥u∥ ≥ dist(u,M).

Thus dist(u,Mu) =dist(u,M)≤ ∥u∥. Also, ∥z − u∥ = dist(u, clI(Mu)) for some
z ∈ clI(Mu). This implies that

dist(u,Mu) ≤ dist(u, clI(Mu)) ≤ dist(u, I(Mu)) ≤ ∥Ix− u∥ ≤ ∥x− u∥

for all x ∈ Mu. Hence ∥z − u∥ = dist(u,M) and so PM (u) is nonempty. More-
over, it is closed and convex.

(b) The proof is exactly as in Theorem 2.6(i)(b) (see [24]).

(2) Let z ∈ PM (u). Then ∥Iz − u∥ = ∥Iz − Iu∥ ≤ ∥z − u∥ = dist(u,M).
This implies that Iz ∈ PM (u) and so I(PM (u)) ⊆ PM (u). Let y ∈ T (PM (u)).
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Since T (Mu) ⊆ I(M) and PM (u) ⊆ Mu, there exist z ∈ PM (u) and x0 ∈ M
such that y = Tz = Ix0. Further, we have

∥Ix0 − u∥ = ∥Tz − Tu∥ ≤ ∥Iz − Iu∥ = ∥Iz − u∥ ≤ ∥z − u∥ = dist(u,M).

Thus x0 ∈ CI
M (u) = PM (u) and so (2) holds.

(3) By (2), the compactness of cl(I(Mu)) (resp., cl(T (Mu))) implies that
clT (PM (u)) is compact. The conclusion now follows if we apply Theorem 2.5(i)
to PM (u). □
Remark 2. As an application of Theorem 2.5(2), we can prove similarly The-
orems 4.3-4.4 in [3] for the uniformly pointwise R-subweakly commuting and
asymptotically I-nonexpansive mapping T .

Another improvement of Lemma 3.3 in [4] is given as follows:

Proposition 2.11. Let I and T be self-mappings on a nonempty subset M of
a normed linear space X. Assume that F (I) is q-starshaped, T and I satisfy
(1) for each n ≥ 1 and x, y ∈ M , where {kn} is a sequence of real numbers with
kn ≥ 1 and limn→∞ kn = 1. For each n ≥ 1, define a mapping Sn on F (I) by

Snx = (1− µn)q + µnT
nx, ∀x ∈ M,

where {µn} and {λn} are sequences as in Lemma 2.4. Then, for each n ≥ 1,
Sn and I have exactly one common fixed point xn in M such that Ixn = xn =
(1− µn)q + µnT

nxn provided one of the following conditions hold:

(i) clT (F (I)) ⊆ F (I) and, for each n ≥ 1, clSn(M) is complete,
(ii) wclT (F (I)) ⊆ F (I) and, for each n ≥ 1, wclSn(M) is complete.

Proof. T (F (I)) ⊆ F (I) implies that Tn(F (I)) ⊆ F (I) for each n ≥ 1 and F (I)
is q-starshaped. Thus each Sn is a self-mapping on F (I). Also, by (1),

∥Snx− Sny∥ = µn∥Tnx− Tny∥
≤ λn max{∥Ix− Iy∥ ,dist(Ix, [Tnx, q]), dist(Iy, [Tny, q]),

dist(Ix, [Tny, q]),dist(Iy, [Tnx, q])}
≤ λn max{∥x− y∥, ∥x− Snx∥ , ∥y − Sny∥ ,

∥x− Sny∥ , ∥y − Snx∥}, ∀x, y ∈ F (I).

(i) Since F (I) is q-starshaped and clT (F (I)) ⊂ F (I), for each n ≥ 1,
clSn(F (I)) ⊂ F (I). The completeness of clSn(M) implies that clSn(F (I))
is complete. By Theorem 2.1 in [17, 20], for each n ≥ 1, there exists xn ∈ F (I)
such that xn = Snxn. Thus, for each n ≥ 1, M ∩ F (Sn) ∩ F (I) ̸= ∅.

(ii) As above, for each n ≥ 1, wclSn(F (I)) ⊂ F (I) and wclSn(F (I)) is
complete. By Theorem 2.1 in [17, 20], the conclusion follows. This completes
the proof. □
Corollary 2.12. Let I and T be self-mappings on a nonempty subset M of
a normed linear space X. Assume that F (I) is q-starshaped, T and I satisfy
(2.1) for each n ≥ 1 and x, y ∈ M , where {kn} is a sequence of real numbers
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with kn ≥ 1 and limn→∞ kn = 1. For each n ≥ 1, define a mapping Sn on
F (I) by

Snx = (1− µn)q + µnT
nx, ∀x ∈ M,

where {µn} and {λn} are sequences as in Lemma 2.4. Then, for each n ≥ 1,
Sn and I have exactly one common fixed point xn in M such that Ixn = xn =
(1− µn)q + µnT

nxn provided one of the following conditions hold:

(i) F (I) is closed and (T, I) is a Banach operator pair and, for each n ≥ 1,
cl(Sn(M)) is complete,

(ii) F (I) is weakly closed and (T, I) is a Banach operator pair and, for each
n ≥ 1, wcl(Sn(M)) is complete.

Remark 3. By comparing Lemma 3.3 of Beg et al. [4] with the first case
of Lemma 2.11 their assumptions “M is closed, IM = M , T (M \ {q}) ⊂
I(M) \ {q}, T is continuous, I is linear q ∈ F (I), M is q-starshaped and T
and I are uniformly R-subweakly commuting on M” are replaced with “F (I)
is q-starshaped, clT (F (I)) ⊆ F (I) and, for each n ≥ 1, clTn(M) is complete.”

3. Convergence theorems

Definition 3.1. Let M be a nonempty closed subset of a Banach space X,
I, T : M → M be mappings and C = {x ∈ M : f(x) = minz∈M f(z)}. Then
I and T are said to satisfy property (S) ([4, 8]) if, for any bounded sequence
{xn} in M , limn→∞ ∥xn − Txn∥ = 0 implies C ∩ F (I) ∩ F (T ) ̸= ∅.

The normal structure coefficientN(X) ([4, 7]) of a Banach spaceX is defined
by

N(X) = inf{diam(M)
rC(M) : M is nonempty bounded and

convex subset of X with diam(M) > 0},
where rC(M) = infx∈M supy∈M ∥x− y∥ is the Chebyshev radius of M relative
to itself and diam(M) = supx,y∈M ∥x − y∥ is diameter of M . The space X is
said to have the uniform normal structure if N(X) > 1. A Banach limit LIM
is a bounded linear functional on l∞ such that

lim inf
n→∞

tn ≤ LIMtn ≤ lim sup
n→∞

tn, LIMtn = LIMtn+1

for all bounded sequences {tn} in l∞. Let {xn} be bounded sequence in X.
Then we can define the real-valued continuous convex function f on X by
f(z) = LIM∥xn − z∥2 for all z ∈ X.

The following lemmas are well known.

Lemma 3.2 ([4, 7]). Let X be a Banach space with uniformly Gâteaux dif-
ferentiable norm and u ∈ X. Let {xn} be bounded sequence in X. Then
f(u) = infz∈X f(z) if and only if LIM⟨z, J(xn − u)⟩ = 0 for all z ∈ X, where
J : X → X∗ is the normalized duality mapping and ⟨·, ·⟩ denotes the generalized
duality pairing.
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Lemma 3.3 ([4, 7]). Let M be a convex subset of a smooth Banach space X,
D be a nonempty subset of M and P be a retraction from M onto D. Then P
is sunny and nonexpansive if and only if

⟨x− Px, J(z − Px)⟩ ≤ 0, ∀x ∈ M, z ∈ D.

In 1967, Browder [5] and Halpern [12] proved strong convergence theorems
in the framework of Hilbert spaces with implicit and explicit iteration, respec-
tively. These results have been extended in various directions.

Theorem 3.4 ([30]). Let M be a bounded closed convex subset of a uniformly
smooth Banach space X. Let T be a nonexpansive self-mapping on M . Fix
u ∈ M and define a net {yα} in M by

yα = (1− α)Tyα + αu, ∀α ∈ (0, 1).

Then {yα} converges strongly to Pu ∈ F (T ) as α → +0, where P is the unique
sunny nonexpansive retraction from M onto F (T ).

Further generalizations of the above mentioned results were studied by some
authors (see [7, 10, 22, 31, 38] and references cited therein).

Now, we are ready to prove strong convergence to nearest common fixed
points of asymptotically I-nonexpansive mappings which are uniformly point-
wise R-subweakly commuting.

Theorem 3.5. Let M be a closed convex subset of a reflexive Banach space X
with a uniformly Gâteaux differentiable norm. Let I and T be self-mappings on
M such that clT (M) ⊂ I(M), q ∈ F (I) and I is affine. Suppose that T is con-
tinuous, uniformly asymptotically regular and asymptotically I-nonexpansive
with a sequence {kn} satisfying kn ≥ 1 and limn→∞ kn = 1. Let {λn} be se-
quence of real numbers in (0, 1) such that limn→∞ λn = 1 and limn→∞

kn−1
kn−λn

=
0. If I and T are uniformly pointwise R-subweakly commuting on M , then we
have the following:

(1) for each n ≥ 1, there is exactly one xn in M such that

(3.1) Ixn = xn = (1− µn)q + µnT
nxn,

(2) if {xn} is bounded and I, T satisfy the property (S), then {xn} converges
strongly to Pq ∈ F (T ) ∩ F (I), where P is the sunny nonexpansive retraction
from M onto F (T ).

Proof. (1) follows from Lemma 2.4.
(2) Since {xn} is bounded, we can define a function f : M → R+ by f(z) =

LIM∥xn − z∥2 for all z ∈ M . Since f is continuous and convex, f(z) → ∞ as
∥z∥ → ∞ and X is reflexive, f(z0) = minz∈M f(z) for some z0 ∈ M . Clearly,
the set C = {x ∈ M : f(x) = minz∈M f(z)} is nonempty. Since {xn} is
bounded and I, T satisfy property (S), it follows that C ∩ F (I) ∩ F (T ) ̸= ∅.
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Suppose that v ∈ C ∩ F (I) ∩ F (T ), then, by Lemma 3.2, we have LIM⟨x −
v, J(xn − v)⟩ ≤ 0 for all x ∈ M . In particular, we have

(3.2) LIM⟨q − v, J(xn − v)⟩ ≤ 0.

From (3.1), we have

(3.3) xn − Tnxn = (1− µn)(q − Tnxn) =
1− µn

µn
(q − xn).

Now, for any v ∈ C ∩ F (I) ∩ F (T ), we have

⟨xn − Tnxn, J(xn − v)⟩ = ⟨xn − v + Tnv − Tnxn, J(xn − v)⟩
≥ −(kn − 1)∥xn − v∥2

≥ −(kn − 1)K2

for some K > 0. It follows from (3.3) that

⟨xn − q, J(xn − v)⟩ ≤ kn − 1

kn − λn
K2

and hence

(3.4) LIM⟨xn − q, J(xn − v)⟩ ≤ 0.

This together with (3.2) implies that

LIM⟨xn − v, J(xn − v)⟩ = LIM∥xn − v∥2 = 0.

Thus there is a subsequence {xm} of {xn} which converges strongly to v. Sup-
pose that there is another subsequence {xj} of {xn} which converges strongly
to y (say). Since T is continuous and limn→∞ ∥xn − Txn∥ = 0, y is a fixed
point of T . It follows from (3.4) that

⟨v − q, J(v − y)⟩ ≤ 0, ⟨y − q, J(y − v)⟩ ≤ 0.

Adding these two inequalities, we get ⟨v− y, J(v− y)⟩ = ∥v− y∥2 ≤ 0 and thus
v = y. Consequently, {xn} converges strongly to v ∈ F (I) ∩ F (T ). We can
define now a mapping P from M onto F (T ) by limn→∞ xn = Pq. From (3.4),
we have

⟨q − Pq, J(v − Pq)⟩ ≤ 0, ∀q ∈ M, v ∈ F (T ).

Thus, by Lemma 3.3, P is the sunny nonexpansive retraction on M . Notice
that xn = Ixn and limn→∞ xn = Pq and so, by the same argument as in the
proof of Theorem 2.5(i), we obtain Pq ∈ F (I). This completes the proof. □
Corollary 3.6 ([4]). Let M be a closed convex subset of a reflexive Banach
space X with a uniformly Gâteaux differentiable norm. Let I and T be continu-
ous self-mappings on M such that I(M) = M , clT (M) ⊂ I(M), q ∈ F (I) and I
is affine. Suppose that T is uniformly asymptotically regular and asymptotically
I-nonexpansive with a sequence {kn} satisfying kn ≥ 1 and limn→∞ kn = 1.
Let {λ} be sequence of real numbers in (0, 1) such that limn→∞ λn = 1 and
limn→∞

kn−1
kn−λn

= 0. If I and T are uniformly R-subweakly commuting on M ,
then we have the following:
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(1) for each n ≥ 1, there is exactly one xn in M such that

Ixn = xn = (1− µn)q + µnT
nxn,

(2) if {xn} is bounded and I, T satisfy the property (S), then {xn} converges
strongly to Pq ∈ F (T ) ∩ F (I), where P is the sunny nonexpansive retraction
from M onto F (T ).

Notice that the conditions of the continuity and linearity of I are not needed
in Theorem 3.6 of Beg et al. [4].

Corollary 3.7. Let M be a closed convex subset of a reflexive Banach space
X with a uniformly Gâteaux differentiable norm. Let I and T be self-mappings
on M such that clT (M) ⊂ I(M), q ∈ F (I) and I is affine. Suppose that T is
continuous and asymptotically I-nonexpansive with a sequence {kn} satisfying
kn ≥ 1 and limn→∞ kn = 1. Let {λn} be sequence of real numbers in (0, 1)
such that limn→∞ λn = 1 and limn→∞

kn−1
kn−λn

= 0. If I and T are uniformly
pointwise R-subweakly commuting on M , then we have the following:

(1) for each n ≥ 1, there is exactly one xn in M such that

Ixn = xn = (1− µn)q + µnT
nxn,

(2) if {xn} is bounded, limn→∞ ∥xn−Txn∥ = 0 and I, T satisfy the property
(S), then {xn} converges strongly to Pq ∈ F (T ) ∩ F (I), where P is the sunny
nonexpansive retraction from M onto F (T ).

Corollary 3.8. Let M be a closed convex subset of a reflexive Banach space
X with a uniformly Gâteaux differentiable norm. Let I and T be pointwise R-
subweakly commuting self-mappings on M such that clT (M) ⊂ I(M), q ∈ F (I),
I is affine, T is continuous and I-nonexpansive on M . Let {λn} be a sequence
of real numbers in (0, 1) such that limn→∞ λn = 1. Then we have the following:

(1) for each n ≥ 1, there is exactly one xn in M such that

Ixn = xn = (1− λn)q + λnTxn,

(2) if {xn} is bounded and I, T satisfy property (S), then {xn} converges
strongly to Pq ∈ F (T ) ∩ F (I), where P is the sunny nonexpansive retraction
from M onto F (T ).

Proof. (1) For each n ≥ 1, define a mapping Tn on M by

Tnx = (1− λn)q + λnTx, ∀x ∈ M.

Then, following the proof lines of Lemma 2.4, we get the conclusion.
(2) Since {xn} is bounded, limn→∞ λn = 1 and

∥xn − Txn)∥ = ∥Ixn − Txn)∥ ≤ (λ−1
n − 1)(∥q∥+ ∥xn∥) → 0,

the conclusion now follows from Theorem 3.6. □
Corollary 3.9 ([7]). Let M be a closed convex bounded subset of a Banach
space X with a uniformly Gâteaux differentiable norm possessing the uniform
normal structure. Let T : M → M be an asymptotically nonexpansive mapping
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with a sequence {kn} satisfying kn ≥ 1 and limn→∞ kn = 1. Let u ∈ M be
fixed, {λn} be sequence of real numbers in (0, 1) such that limn→∞ λn = 1 and
limn→∞

kn−1
kn−λn

= 0. Then we have the following:

(1) for each n ≥ 1, there is unique xn in M such that

xn = (1− µn)u+ µnT
nxn,

(2) if limn→∞ ∥xn−Txn∥ = 0, then {xn} converges strongly to a fixed point
of T .

Proof. (1) follows from Lemma 2.4.
(2) It is well known that every Banach space with the uniform normal struc-

ture is reflexive (see [7]). Since {xn} is bounded, we can define a function
f : M → R+ by f(z) = LIM∥xn − z∥2 for all z ∈ M . As in the proof of
Theorem 3.5(2), the set C = {x ∈ M : f(x) = minz∈M f(z)} is nonempty.
Define the set

ωw(x) := {y ∈ X : y = weak- lim
j

Tnjx for some nj → ∞}.

Using the assumption that limn→∞ ∥xn − Txn∥ = 0, it is easy to see that
ωw(x) ⊂ C for each x ∈ C. By Lemma 2.2 [7], T has a fixed point in C. Thus
T satisfies the property (S) and so the result follows from Theorem 3.5. □

Remark 4. (1) Theorem 3.5 improves and extends the results of Beg et al.
[4], Cho et al. [8], Lim and Xu [23], Schu [33, 34] to more general classes of
mappings.

(2) As an application of Theorem 2.12, the strong convergence results similar
to Theorem 3.5 can be proved without any type of commutativity condition on
the mappings.

(3) Corollary 3.8 extends the result of Schu [32] to I-nonexpansive mappings.
(4) It is worth to notice that the class of asymptotically I-nonexpansive

maps properly contains the class of asymptotically nonexpansive maps (see
Examples 1.2 and 1.3 in [37]).
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