• Title/Summary/Keyword: commutative

Search Result 618, Processing Time 0.018 seconds

ZERO-DIVISOR GRAPHS OF MULTIPLICATION MODULES

  • Lee, Sang Cheol;Varmazyar, Rezvan
    • Honam Mathematical Journal
    • /
    • v.34 no.4
    • /
    • pp.571-584
    • /
    • 2012
  • In this study, we investigate the concept of zero-divisor graphs of multiplication modules over commutative rings as a natural generalization of zero-divisor graphs of commutative rings. In particular, we study the zero-divisor graphs of the module $\mathbb{Z}_n$ over the ring $\mathbb{Z}$ of integers, where $n$ is a positive integer greater than 1.

SOME REMARKS ON EISENSTEIN'S CRITERION

  • Woo, Sung-Sik
    • Communications of the Korean Mathematical Society
    • /
    • v.23 no.4
    • /
    • pp.499-509
    • /
    • 2008
  • In [4] we showed that a polynomial over a Noetherian ring is divisible by some other polynomial by looking at the matrix formed by the coefficients of the polynomials which we called the resultant matrix. Using the result, we will find conditions for a polynomial over a commutative ring to be irreducible. This can be viewed as a generalization of the Eisenstein's irreducibility criterion.

EAKIN-NAGATA THEOREM FOR COMMUTATIVE RINGS WHOSE REGULAR IDEALS ARE FINITELY GENERATED

  • Chang, Gyu Whan
    • Korean Journal of Mathematics
    • /
    • v.18 no.3
    • /
    • pp.271-275
    • /
    • 2010
  • Let R be a commutative ring with identity, T(R) be the total quotient ring of R, and D be a ring such that $R{\subseteq}D{\subseteq}T(R)$ and D is a finite R-module. In this paper, we show that each regular ideal of R is finitely generated if and only if each regular ideal of D is finitely generated. This is a generalization of the Eakin-Nagata theorem that R is Noetherian if and only if D is Noetherian.

SOME NEW CHARACTERIZATIONS OF QUASI-FROBENIUS RINGS BY USING PURE-INJECTIVITY

  • Moradzadeh-Dehkordi, Ali
    • Bulletin of the Korean Mathematical Society
    • /
    • v.57 no.2
    • /
    • pp.371-381
    • /
    • 2020
  • A ring R is called right pure-injective if it is injective with respect to pure exact sequences. According to a well known result of L. Melkersson, every commutative Artinian ring is pure-injective, but the converse is not true, even if R is a commutative Noetherian local ring. In this paper, a series of conditions under which right pure-injective rings are either right Artinian rings or quasi-Frobenius rings are given. Also, some of our results extend previously known results for quasi-Frobenius rings.

ON RINGS IN WHICH EVERY IDEAL IS WEAKLY PRIME

  • Hirano, Yasuyuki;Poon, Edward;Tsutsui, Hisaya
    • Bulletin of the Korean Mathematical Society
    • /
    • v.47 no.5
    • /
    • pp.1077-1087
    • /
    • 2010
  • Anderson-Smith [1] studied weakly prime ideals for a commutative ring with identity. Blair-Tsutsui [2] studied the structure of a ring in which every ideal is prime. In this paper we investigate the structure of rings, not necessarily commutative, in which all ideals are weakly prime.

SOME RESULTS ON n-JORDAN HOMOMORPHISMS

  • Cheshmavar, Jahangir;Hosseini, Seyed Kamel;Park, Choonkil
    • Bulletin of the Korean Mathematical Society
    • /
    • v.57 no.1
    • /
    • pp.31-35
    • /
    • 2020
  • With the motivation to extend the Zelasko's theorem on commutative algebras, it was shown in [2] that if n ∈ {3, 4} is fixed, A, B are commutative algebras and h : A → B is an n-Jordan homomorphism, then h is an n-ring homomorphism. In this paper, we extend this result for all n ≥ 3.

C32-CONSTRUCTION ON Mn(κ)

  • Song, Youngkwon
    • Korean Journal of Mathematics
    • /
    • v.12 no.1
    • /
    • pp.23-32
    • /
    • 2004
  • Let (B, $m_B$, ${\kappa}$) be a maximal commutative ${\kappa}$-subalgebra of a matrix algebra $M_n(\kappa)$. We will construct a maximal commutative ${\kappa}$-subalgebra (R, $m$, ${\kappa}$) of $M_n+3(\kappa)$ from the algebra B such that the algebra R has dimension greater than the dimension of B by 3. Moreover, we will show a $C_i$-construction doesn't imply a $C^3_2$-construction for $i=1,2$.

  • PDF