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SOME REMARKS ON EISENSTEIN’S CRITERION

Sung Sik Woo

Abstract. In [4] we showed that a polynomial over a Noetherian ring is

divisible by some other polynomial by looking at the matrix formed by the
coefficients of the polynomials which we called the resultant matrix. Using
the result, we will find conditions for a polynomial over a commutative

ring to be irreducible. This can be viewed as a generalization of the
Eisenstein’s irreducibility criterion.

1. Introduction

Let A be a commutative Noetherian ring with 1. Given two polynomials
f, g ∈ A[X] we showed exactly when g divides f by using the matrix R(f, g)
formed by the coefficients of f and g [4]. The polynomial f will be irreducible
when there is no such polynomial g of degree ≥ 1 which divides f . We will
show that Eisenstein’s irreducibility criterion can be deduced from our result
and we will show how Eisenstein’s criterion can be generalized in this method.

In Section 2, we recall the notion of resultant matrix and Fitting invari-
ant. And we deduce an immediate corollary of Fitting’s Lemma and recall the
main result of [4]. In Section 3, we show how Eisenstein’s criterion can be
deduced from our result and then we generalize Eisenstein criterion by using
the resultant matrix R(f, g) in Section 4.

All rings are commutative with the identity 1.

2. Resultant and Fitting invariant

In this section we recall the result of [4] which we will use later. We adapted
the notion of resultant from Ch.IV Sec. 6 of [1] for our purpose. To fix our
notations let A be a commutative ring and F1, F2 be A-free modules with bases
β = {v1, v2, . . . , vn} and γ = {w1, w2, . . . , wm} of F1 and F2 respectively. Let
ϕ : F1 → F2 be an A-linear map. Then the matrix X = (xij) ∈ M(n × m,A)
of ϕ with respect to the bases β and γ is defined by the equality

ϕ(vi) =
m∑

j=1

xijwj (i = 1, 2, . . . , n).
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Here we denote the matrices of size n×m with coefficients in A by M(n×m,A).
If ψ : F2 → F3 is another A-linear map of free modules with matrix Y , then
the matrix corresponding to ψ ◦ ϕ will be XY . Let A be a commutative ring.
For positive integers n,m let f, g ∈ A[X] be the polynomials

f(X) = anXn + an−1X
n−1 + · · · + a0

g(X) = bmXm + bm−1X
m−1 + · · · + b0.

Let Sn be the A-submodule of A[X] consisting of polynomials of degree < n.
Choose bases B1 (resp. B2) of Sm × Sn (resp. Sn+m ) by

B1 = {(Xm−1, 0), . . . , (X, 0), (1, 0), (0, Xn−1), . . . , (0, X), (0, 1)}
B2 = {Xn+m−1, . . . , X, 1}.

Define an A-linear map ϕ : Sn × Sm → Sn+m by

ϕ(u, v) = uf + vg.

Let us denote R(f, g) the matrix of ϕ with respect to B1 and B2,

R(f, g) =



an an−1 · · · 0 a0 0 · · · 0
0 an an−1 · · · a1 a0 · · · 0

· · · · · ·
. . . · · · · · · · · · · · · 0

0 · · · 0 an an−1 · · · · · · a0

bm bm−1 · · · b1 b0 0 0 0
0 bm bm−1 · · · b1 b0 0 0
· · · · · · · · · · · · · · · · · · · · · · · ·
0 · · · · · · bm bm−1 · · · · · · b0


.

The matrix R(f, g) will be called the resultant matrix and the determinant of
the resultant matrix R(f, g) is called the resultant res(f, g) of f and g.

Next we recall the notion of Fitting invariant [3, Ch. 20] and obtain an
immediate corollary for future use.

Definition 2.1. Let F and G be free modules over a commutative ring A and
let ϕ : F → G be an A-linear map. Then we define Ijϕ be the image of the
map

∧jF ⊗ ∧jG∗ → A.

When ϕ is expressed as a matrix with respect to some bases for F and G then
Ij(ϕ) is the ideal generated by all minors of size j. By convention we define
I0ϕ = A.

Note that we have a chain of ideals

A = I0ϕ ⊇ I1ϕ ⊇ I2ϕ ⊇ · · · ⊇ Ir

because a minor of size j is a linear combination of minors of size (j − 1).
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Let M be a finitely generated A-module and let

F
ϕ→ G → M → 0

F ′ ϕ′

→ G′ → M → 0

be two free presentations of M with G, G′ free of rank r, r′ respectively. Then
Fitting’s Lemma asserts that

Lemma 2.2 (Fitting’s Lemma [3, Ch. 20.2]). Ir−iϕ = Ir′−iϕ
′.

Using the independence on presentations of M we can define:

Definition 2.3. We define the i-th Fitting invariant of M to be the ideal

Fitti(M) = Ir−i,

where Ir−i is the common value Ir−iϕ = Ir′−iϕ
′ in Fitting’s Lemma.

For convenience we will also write Fitti(ϕ) for Fitti(M) when ϕ is a linear
map or a matrix giving the cokernel M . We get a corollary to Fitting’s Lemma
[4, Corollary 3.4].

Corollary 2.4. Let A be a commutative ring and let X ∈ M(n × m,A),
Y ∈ M(m,A) and Z ∈ M(n,A). If Y,Z are invertible matrices, then Fitti(X)
= Fitti(Y X)= Fitti(XZ). ¤

Now we state a main result of [4, Theorem 4.4] in the form we will use.

Theorem 2.5. Let A be a Noetherian commutative ring and f, g ∈ A[X] be
monic polynomials of degree n and m respectively with n > m. Then g(X)
divides f(X) if and only if the condition

(R) the minors of R(f, g) of size bigger than n vanishes

satisfies

Remark. In (iv), of [4, Theorem 4.4] the condition “the minors of R(f, g) of
size n generate the unit ideal” is redundant since the n × n matrix in the low
left corner of R(f, g) has determinant bn

m and we assumed f and g to be monic.
Also monic polynomials can be replaced by the polynomials with a unit leading
coefficients.

3. Irreducibility of polynomials

We first carefully define our terms to make things clear. An element a in
a ring A is said to be irreducible if a = bc, then either b or c is a unit. It is
well known that a polynomial f(X) =

∑n
i=0 aiX

i is a unit if and only if a0 is
a unit and ai (0 < i ≤ n) are nilpotent. We will say that g divides f (written
g|f) if there is a polynomial h(X) =

∑l
i=0 ciX

i such that f = gh. Therefore if
an is a unit, then f(X) is irreducible whenever there is no polynomial g(X) =∑m

i=0 biX
i with m > 0 such that g|f .



502 SUNG SIK WOO

An element a ∈ A is a nilpotent element if there is a positive integer n such
that an = 0. The smallest such n will be called the nilpotency of a. If a is
non-nilpotent, then we will say that the nilpotency of a is ∞. And we adopt
the convention that ∞ larger than any integer.

Let ϕ : A → B be a ring homomorphism. For a polynomial f(X) =∑n
i=0 aiX

i in A[X] we will write ϕ(f(X)) =
∑n

i=0 ϕ(ai)Xi ∈ B[X]. Often
we will abbreviate ϕ(ai) by āi.

We will make use of the following observation.

Lemma 3.1. Let ϕ : A → B be a ring homomorphism and let f(X) =∑n
i=0 aiX

i be a polynomial in A[X]. Suppose ϕ(an) is a unit and ϕ(f(X)) =∑n
i=0 ϕ(ai)Xi ∈ B[X] is irreducible then so is f(X) in A[X].

Proof. Assume f = gh with g(X) =
∑m

i=0 biX
i and h(X) =

∑l
i=0 ciX

i with
m, l > 0. Then ϕ(bm) and ϕ(cl) are units. In particular, deg(g) = deg(ϕ(g))
and deg(h) = deg(ϕ(h)). Hence ϕ(f) = ϕ(g)ϕ(h) is a proper factorization in
B[X]. ¤
Corollary 3.2. Let ϕ : A → B be a ring homomorphism where B is Noe-
therian. Let f(X) =

∑n
i=0 aiX

i be a polynomial in A[X]. For any g(X) =∑m
i=0 biX

i (m < n) in B[X] such that bm is a unit and b0|ϕ(a0) does not
satisfies the condition (R) of Theorem 2.5 then f(X) is irreducible in A[X].

Proof. Follows immediately from Theorem 2.5 and the lemma above. ¤
We will show how Eisenstein criterion can be deduced from our result. (see

for example, [Lang, Algebra, Addison Wesley, 3rd ed, 1993].) A unique fac-
torization domain (UFD for short. Lang used the term ‘factorial ring’) is an
integral domain in which every element has a ‘unique’ factorization into irre-
ducible elements. An irreducible element of a UFD generates a prime ideal and
is called a prime element.

Theorem 3.3 (Eisenstein criterion). Let A be a UFD with its quotient field
K. Let f(X) = anXn + · · · + a0 be a polynomial of degree n ≥ 1 in A[X]. Let
p be a prime in A and assume

p - an, p|ai (i = 0, 1, . . . , n − 1), p2 - a0.

Then f(X) is irreducible in K[X]. If an is a unit, then f(X) is irreducible in
A[X].

Since Theorem 2.5 required the ring A to be Noetherian whereas the Eisen-
stein criterion did not, we need to reduce the statement of Eisenstein criterion
for a Noetherian ring. For this we will use the following lemma. For its proof
we will use the results in [2].

Lemma 3.4. Let A be a UFD and p0, p1, . . . , pn be the prime ideals generated
by the primes pi (i = 0, 1, . . . , n) of A. Let S be the multiplicative S = ∪n

i=0pi.
Then S−1A is a Noetherian UFD. A fortiori, S−1A is a PID.
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Proof. First we know that [2, Theorem 1, p. 502] A is a Krull domain. There-
fore so is S−1A. And S−1A is a semilocal ring with the maximal ideals S−1pi.
Hence S−1A is a Dedekind domain. By [2, Theorem 1, p. 494], we see that
S−1A is Noetherian.

It is well known that a semilocal Dedekind domain is a PID. See for exam-
ple see [Serge Lang, Algebraic number theory, Addison-Wesley, 1970, Proposi-
tion 15, p. 21]. ¤

Using this we can prove Eisenstein criterion by the way of Theorem 2.5.

Proof of Eisenstein criterion. Let p0, p1, . . . , pn be the set of all prime divisors
of the coefficients of f(X) and let p = p0. Let pi = (pi) be the prime ideals
generated by pi (i = 0, 1, . . . , n) and let S = ∪n

i=0pi. Let B = S−1A/p0 (which
is a field) and let ϕ be the composition of the maps A → S−1A → B =
S−1A/p0. We will denote the image ϕ(a) of a under ϕ by ā.

Suppose g(X) =
∑m

i=0 biX
i ∈ A[X] (m > 0) is a divisor of f ; let f = gh

with h(X) =
∑k

i=0 ciX
i. Then since p2 - a0 = b0c0 we have either p - b0 or

p - c0. Hence we may assume without loss of generality that p - b0. (Otherwise
reverse the role of g and h.) Therefore the canonical image b̄0 of b0 in B/(p)
is also nonzero. Further, since p divides ai (i = 0, 1, . . . , n − 1) we see that
āi = 0 (i = 0, 1, . . . , n − 1).

Thus the resultant matrix R(ϕ(f), ϕ(g)) is of the form

R(ϕ(f), ϕ(g)) =



ān 0 · · · 0 0 0 · · · 0
0 ān 0 · · · 0 0 · · · 0

· · · · · ·
. . . · · · · · · · · · · · · 0

0 · · · 0 ān 0 · · · · · · 0
b̄m b̄m−1 · · · b̄1 b̄0 0 0 0
0 b̄m b̄m−1 · · · b̄1 b̄0 0 0
· · · · · · · · · · · · · · · · · · · · · · · ·
0 · · · · · · b̄m b̄m−1 · · · · · · b̄0


.

Since we assumed g|f we see that ϕ(g) divides ϕ(f). Hence the condition (R)
of Theorem 2.5 for R(ϕ(f), ϕ(g)) has to be satisfied namely the minors of size
bigger than n has to vanish. However the determinant of R(ϕ(f), ϕ(g)) is ām

n b̄n
0

which is nonzero. This is a contradiction. ¤

4. Generalized Eisenstein criterion

Theorem 4.1. Let A be a commutative ring and B be a Noetherian ring. Let
f(X) = anXn + an−1X

n−1 + · · ·+ a0 be a polynomial of degree n ≥ 1 in A[X].
Let ϕ : A → B be a ring homomorphism such that

(i) ϕ(an) is a unit,
(ii) ϕ(ai) = 0 (i = 0, 1, . . . , n − 1),
(iii) if a0 = b0c0, then either ϕ(b0) or ϕ(c0) is of nilpotency > n.

Then f(X) is irreducible in A[X].
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Proof. Suppose g(X) =
∑m

i=0 biX
i ∈ A[X] is a divisor of f . And let f = gh

with h(X) =
∑l

i=0 ciX
i ∈ A[X]. Then b0c0 = a0 and, by (iii), either ϕ(b0)

or ϕ(c0) is of nilpotency > n. We may assume ϕ(b0) is of nilpotency > n.
(Otherwise reverse the role of g and h.)

Since ϕ(f) = ϕ(g)ϕ(h), the minors of resultant matrix R(ϕ(f), ϕ(g)) of size
bigger than n must vanish by Theorem 2.5. By (ii) we have

R(ϕ(f), ϕ(g)) =



ān 0 · · · 0 0 0 · · · 0
0 ān 0 · · · 0 0 · · · 0

· · · · · ·
. . . · · · · · · · · · · · · 0

0 · · · 0 ān 0 · · · · · · 0
b̄m b̄m−1 · · · b̄1 b̄0 0 0 0
0 b̄m b̄m−1 · · · b̄1 b̄0 0 0
· · · · · · · · · · · · · · · · · · · · · · · ·
0 · · · 0 b̄m b̄m−1 · · · · · · b̄0


,

where bar denotes the image under ϕ. The determinant of the resultant matrix
R(ϕ(f), ϕ(g)) is āk

nb̄n
0 . Since we assumed ān is a unit and b̄0 is of nilpotency

> n we see that det(R(ϕ(f), ϕ(g))) ̸= 0. This contradicts to the requirement
that the minors of size bigger than n must vanish. ¤

Remark. Using Theorem 4.1, we can prove Eisenstein criterion. In fact, if we
choose ϕ and B as in the proof of Theorem 3.3, then all the conditions of
Theorem 4.1 are satisfied.

The following result may be proved by the same method as the original proof
of Eisenstein criterion. However we prove this by using the main result of [4].
The following rather well known result [3, Exercise 18.11] may be proved by the
same method as the original proof of Eisenstein criterion. However we prove
this by using the main result of [4].

Corollary 4.2. Let A be a Noetherian ring and let f(X) = anXn+an−1X
n−1+

· · · + a0 be a polynomial of degree n ≥ 1 in A[X]. Let p be a prime ideal of A
and assume

an /∈ p, ai ∈ p (i = 0, 1, . . . , n − 1), a0 /∈ p \ p2.

Then f(X) is irreducible in A[X].

Proof. We let B = Ap/pAp and let ϕ be the composition A → Ap → Ap/pAp.
Then the conditions of Theorem 4.1 are satisfied. Hence f(X) is irreducible in
A[X]. ¤

In order to further generalize Eisenstein criterion we will use the following
fact which should be well known.
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Lemma 4.3. Let M1,M4 be square matrices and M1 is invertible. Then we
have(

M1 M2

M3 M4

)
=

(
I 0

M3M
−1
1 I

)(
M1 0
0 M4 − M3M

−1
1 M2

)(
I M−1

1 M2

0 I

)
.

In particular we have

det
(

M1 M2

M3 M4

)
= det(M1) · det(M4 − M3M

−1
1 M2).

Proof. One can check (i) easily and (ii) follows from (i). ¤

The following theorem can be viewed as a generalization of Eisenstein crite-
rion.

Theorem 4.4. Let A be a commutative ring and B be a Noetherian ring and let
ϕ : A → B be a ring homomorphism. Let f(X) = anXn+an−1X

n−1+· · ·+a0 be
a polynomial of degree n ≥ 1 in A[X]. Let k be an integer such that 0 ≤ k < n.
Assume

(i) ϕ(an) is a unit,
(ii) ϕ(ai) = 0 (i = 0, 1, . . . , k).

Then f(X) has no divisor g(X) ∈ A[X] of degree ≥ n − k with ϕ(g(0)) of
nilpotency > k + 1.

Proof. Suppose g(X) =
∑m

i=0 biX
i (m ≥ n − k) is a divisor of f such that the

nilpotency of ϕ(b0) is > k + 1. First we have that R(ϕ(f), ϕ(g)) is of the form

R(ϕ(f), ϕ(g)) =



ān · · · āk+1 0 0 0 · · · · · · 0
0 ān · · · āk+1 0 0 · · · · · · 0

· · · · · ·
. . . · · · · · · · · · · · · · · · 0

0 · · · 0 ān · · · āk+1 0 · · · 0
b̄m b̄m−1 · · · b̄1 b̄0 0 0 · · · 0
0 b̄m b̄m−1 · · · b̄1 b̄0 0 · · · 0
0 · · · · · · · · · · · · · · · · · · · · · 0
0 · · · · · · 0 b̄m b̄m−1 · · · · · · b̄0


.

Since ϕ(g)|ϕ(f)) we must have all minors of R(ϕ(f), ϕ(g)) of size > n vanish.
We will show that this is not the case. Let M1 be the m × m matrix on the
upper left corner and M4 be the n × n matrix on the lower right corner. And
let M3 be the n × m matrix on the lower left corner and finally let M2 be the
m × n matrix on the upper right corner. Hence R(ϕ(f), ϕ(g)) can be written
as

R(ϕ(f), ϕ(g)) =
(

M1 M2

M3 M4

)
.

First suppose B is a field. We want show that R(ϕ(f), ϕ(g)) has rank > n.
Obviously the rank of

(
M1 M2
M3 M4

)
is the same as the rank of

(
M1 0

0 M4−M3M−1
1 M2

)
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by Lemma 4.3. Let’s look at the lower left corner M3M
−1
1 M2 which is of the

form
b̄m b̄m−1 ··· b̄1
0 b̄m ··· b2
··· ··· ···
0 0 0 bm
0 0 0 0
··· ··· ···
··· ··· ···
··· ··· ···
0 0 0 0


 ān ··· āk+1 0 ··· 0

0 ān ··· ak+1 ··· 0
··· ···
··· ···
··· ···

0 0 0 an

−1


0 0 ··· ··· 0 0

··· ···
0 0 ··· ··· 0 0

āk+1 0 0 0 0 0
āk+2 āk+1 0 0 0 0

∗ ∗
. . .

∗ ··· āk+2 āk+1 ··· 0

 ,

where ∗ denotes the entries in which we are not interested. We know that M−1
1

is again an upper triangular matrix and M3M
−1
1 is an n × m matrix whose

possible nonzero entries are in the first m rows. On the other hand, M2 is an
m×n matrix with possible nonzero entries in the lower (n−k−1)× (n−k−1)
matrix. Thus the only nonzero entries of M3M

−1
1 M2 are in the first (n−k−1)

columns.
Now delete the first (n − k − 1) columns and rows from M4 − M3M

−1
1 M2

then we obtain a (k + 1) × (k + 1) matrix whose determinant is b̄k+1
0 which is

nonzero. Hence the rank of M4 − M3M
−1
1 M2 is bigger than or equal to k + 1.

On the other hand, we know that M1 is an m × m invertible matrix. Hence
the rank of

(
M1 0

0 M4−M3M−1
1 M2

)
is bigger than or equal to m + k + 1 which is

> n. Thus the rank of R(ϕ(f), ϕ(g)) is > n. As we contended.

Now suppose B is a commutative ring. Then the rank of a matrix does not
make sense. It turns out that the notion of Fitting invariant instead of rank
works for our situation. We will show that the (m + k + 1)-th Fitting invariant
of R(ϕ(f), ϕ(g)) is nonzero. (Then we are done since m + k + 1 > n.)

By Corollary 2.4, we have Im+k+1

(
M1 M2
M3 M4

)
= Im+k+1

(
M1 0

0 M4−M3M−1
1 M2

)
.

Since Im+k+1(∗) is generated by all (m + k + 1) × (m + k + 1) minors it suf-
fices to show that there is a nonzero minor of size (m + k + 1). As above
the (m + k + 1) × (m + k + 1) matrix obtained by deleting the (m + 1), (m +
2), . . . , (m + k − n + 1)-th rows and columns from

(
M1 0

0 M4−M3M−1
1 M2

)
has de-

terminant ām
n b̄k+1

0 which is nonzero since ān is a unit and b̄0 is of nilpotency
> k + 1. ¤
Remark. Again Eisenstein criterion can be deduced from Theorem 4.4 with
k = n − 1. In fact, if g is a divisor say f = gh, then we may assume p - g(0).
(For otherwise reverse the role of g and h.) Choose B = A/(p) (if A is not
Noetherian, then we may have to localize as we did before) and ϕ to be the
natural map A → B. Now the theorem asserts that f has no factor of degree
≥ 1.

Corollary 4.5. Let A be a commutative ring and B be a Noetherian ring.
Let f(X) = anXn + an−1X

n−1 + · · · + a0 be a polynomial of degree n ≥ 1 in
A[X]. Let ϕ : A → B be a ring homomorphism. Let k be an integer such that
0 ≤ k < n. Assume
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(i) ϕ(an) is a unit,
(ii) ϕ(ai) = 0 (i = 0, 1, . . . , k),
(iii) if a0 = b0c0, then ϕ(b0) and ϕ(c0) are of nilpotency > k + 1.

Then f(X) has no divisor g(X) ∈ A[X] of degree ≥ n − k.

Proof. In the proof of the theorem the condition we needed was that the con-
stant term of the divisor g is of nilpotency > k +1 which was used to show the
(m + k + 1) × (m + k + 1) minor ām

n b̄k+1
0 is nonzero. Now this is guaranteed

by the condition (iii). ¤

Next we will show that the condition (ii) of Theorem 4.4 can be replaced by
a weaker condition that “ϕ(ai) is nilpotent for i = 0, 1, . . . , k.”

Theorem 4.6. Let A be a commutative ring and B be a Noetherian ring. Let
f(X) = anXn + an−1X

n−1 + · · · + a0 be a polynomial of degree n ≥ 1 in
A[X]. Let ϕ : A → B be a ring homomorphism. Let k be an integer such that
0 ≤ k < n. Assume

(i) ϕ(an) is a unit,
(ii) ϕ(ai) is nilpotent for i = 0, 1, . . . , k.

Then f(X) has no divisor g(X) ∈ A[X] of degree ≥ n − k with g(0) a non-
nilpotent element.

Proof. Suppose g(X) =
∑m

i=0 biX
i (m ≥ n − k) is a divisor of f with ϕ(b0) is

not nilpotent. First we have that R(ϕ(f), ϕ(g)) is of the form

R(ϕ(f), ϕ(g)) =



ān · · · āk+1 nk · · · n0 · · · · · · 0
0 ān · · · āk+1 nk · · · · · · · · · 0

· · · · · ·
. . . · · · · · · · · · · · · · · · 0

0 · · · 0 ān · · · āk+1 nk · · · n0

b̄m b̄m−1 · · · b̄1 b̄0 0 0 · · · 0
0 b̄m b̄m−1 · · · b̄1 b̄0 0 · · · 0
0 · · · · · · · · · · · · · · · · · · · · · 0
0 · · · · · · 0 b̄m b̄m−1 · · · · · · b̄0


,

where the bar denotes the image under ϕ. As before write R(ϕ(f), ϕ(g)) as

R(ϕ(f), ϕ(g)) =
(

M1 M2

M3 M4

)
,

where M1 is the m × m matrix on the upper left corner and M4 be the n × n
matrix on the lower right corner of R(ϕ(f), ϕ(g)). And M3 is the n×m matrix
on the lower left corner and M2 is the m× n matrix on the upper right corner
of R(ϕ(f), ϕ(g)).

Since we assumed ϕ(g) divides ϕ(f) we must have all minors of R(ϕ(f), ϕ(g))
of size > n vanish. We will show that this is not the case.

As in the proof of Theorem 4.4, we will show that the (m + k + 1)-th Fitting
invariant of R(ϕ(f), ϕ(g)) is nonzero. As in the proof of Theorem 4.4, we need
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to show that Im+k+1

(
M1 0

0 M4−M3M−1
1 M2

)
is nonzero. Now M3M

−1
1 is of the

form



b̄m b̄m−1 · · · b̄1

0 b̄m · · · b2

· · · · · · · · ·
0 0 0 bm

0 0 0 0
· · · · · · · · ·
· · · · · · · · ·
· · · · · · · · ·
0 0 0 0




ān · · · āk+1 nk nk−1 · · ·
0 ān · · · ak+1 nk · · ·

· · · · · ·
· · · · · ·
· · · · · · an an−1

0 0 0 an



−1

and the possible nonzero entries are in the first m rows.
And M2 is of the form



n∗ · · · n0 · · · 0 0
· · · · · ·

nk nk−1 · · · · · · 0 0
āk+1 nk · · · n0 0 0
āk+2 āk+1 nk · · · n0 0

∗ ∗
. . .

∗ · · · āk+2 āk+1 · · · n0


,

where ∗ denotes the entries in which we are not interested. Further only possible
non-nilpotent entries are in the first (n − k − 1) columns. Hence the possible
non-nilpotent entries of the product M3M

−1
1 M2 are in the first (n − k − 1)

columns.
Since the sum of two nilpotent elements and a product of a nilpotent element

and arbitrary element are again nilpotent we see that M4 − M3M
−1
1 M2 is of

the form


b̄0 0 · · · 0
b̄1 b̄0 0 · · · 0

· · · · · ·
b̄m · · · b̄1 b̄0 · · · 0

· · · · · · 0
0 · · · b̄m b̄m−1 · · · b̄0

 −


∗ · · · ∗ ♮ · · · ♮

· · · · · ·
∗ · · · ∗ ♮ · · · ♮
0 · · · 0 0 · · · 0
0 · · · 0 0 · · · 0
0 · · · 0 0 · · · 0

 ,

where ♮’s denotes a nilpotent element. (The only possible nonzero rows of the
second matrix are the first m rows.) If we delete the first (n − k − 1) columns
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and rows from M4 − M3M
−1
1 M2 then it is of the form

b̄0 + ♮ ♮ · · · ♮ · · · ♮
. . . · · ·

∗ · · · b̄0 + ♮ ♮ · · · ♮
0 b̄m ∗ b̄0 0 · · · 0

· · ·
. . . 0

· · · 0 b̄m · · · b̄0 0
0 · · · 0 b̄m · · · b̄0


.

The determinant of this matrix is of the form b̄k+1
0 +ν where ν is some nilpotent

element. Therefore
(

M1 0

0 M4−M3M−1
1 M2

)
contains a (m + k + 1) × (m + k + 1)

submatrix whose determinant is of the form ām
n b̄k+1

0 + ν0 for some nilpotent
element ν0. Since ān is a unit and b0 is not nilpotent we see that the determinant
is nonzero. ¤
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