SOME RESULTS ON n-JORDAN HOMOMORPHISMS

Jahangir Cheshmavar, Seyed Kamel Hosseini, and Choonkil Park

Abstract

With the motivation to extend the Zelasko's theorem on commutative algebras, it was shown in [2] that if $n \in\{3,4\}$ is fixed, A, B are commutative algebras and $h: A \rightarrow B$ is an n-Jordan homomorphism, then h is an n-ring homomorphism. In this paper, we extend this result for all $n \geq 3$.

1. Introduction

Let $n \in \mathbb{N}$ and let A and B be rings (algebras). An additive mapping $h: A \rightarrow B$ is called an n-Jordan homomorphism if for all $a \in A$,

$$
h\left(a^{n}\right)=h(a)^{n} .
$$

Also, an additive mapping $h: A \rightarrow B$ is called an n-ring homomorphism if h is an n-multiplicative, that is, for all $a_{1}, a_{2}, \ldots, a_{n} \in A$,

$$
h\left(a_{1} a_{2} \cdots a_{n}\right)=h\left(a_{1}\right) h\left(a_{2}\right) \cdots h\left(a_{n}\right) .
$$

If $h: A \rightarrow B$ is a linear n-ring homomorphism, then we say that h is an n-homomorphism. A 2-Jordan homomorphism is then just a Jordan homomorphism, in the usual sense, between algebras. Thus we may assume in the sequel that $n \geq 3$. Obviously, each homomorphism is an n-homomorphism for all $n \geq 2$, but the converse is not true, in general. For example, if φ is a homomorphism, then $h=-\varphi$ is a 3-homomorphism, which is not a homomorphism (see [1]). The concept of n-Jordan homomorphism was studied by Zelasko in [6] (see also [4]). In 2009, Eshaghi Gordji [2, Theorems 2.2 and 2.5] studied n-Jordan homomorphisms on Banach algebras for $n \in\{3,4\}$, and presented a method to the proof of Zelasko's Theorem for $n=3$. Eshaghi Gordji et al. [3] extended this problem for $n=5$. In what follows, we provide an overall and simple approach to show that if A and B are commutative algebras and

[^0]$h: A \rightarrow B$ is an n-Jordan homomorphism, then h is an n-ring homomorphism, for all $n \geq 3$ (Theorem 2.3). By proving this theorem, some of the important theorems such as theorem due to Park and Trout, which asserts that if A and B are two commutative algebras and $h: A \rightarrow B$ is a linear involution preserving n-Jordan homomorphism between commutative C^{\star}-algebras, then h is norm contractive, that is, $\|h\| \leq 1$ (Corollary 2.6), can be extended as a result.

2. n-Jordan homomorphisms

Obviously, each n-ring homomorphism is an n-Jordan homomorphism, the converse is not true in general, but under a certain condition, n-Jordan homomorphisms are n-ring homomorphisms. For the sake of completeness we first state the following results, which were appeared in [6] and [2, Theorem 2.2].
Theorem 2.1. Suppose that A is a Banach algebra, which need not be commutative, and suppose that B is a semisimple commutative Banach algebra. Then each Jordan homomorphism $h: A \rightarrow B$ is a ring homomorphism.

Theorem 2.2. Let $n \in\{3,4\}$ be fixed, A, B be commutative algebras and let h : $A \rightarrow B$ be an n-Jordan homomorphism. Then h is an n-ring homomorphism.

Now we prove our main theorem, which is a generalization of Theorem 2.2.
Theorem 2.3. Let A and B be commutative algebras, $n \geq 3$ an integer and let $h: A \rightarrow B$ be an n-Jordan homomorphism. Then h is an n-ring homomorphism.
Proof. For $n \in\{3,4\}$, the theorem was proved in [2, Theorem 2.2]. But we give another simple proof to find a method for the proof of the theorem for any $n \geq 3$. Let $x, y, z \in A$ be arbitrary. Recall that h is an additive mapping such that $h\left(a^{3}\right)=h(a)^{3}$ for all $a \in A$.

Define the mapping $\psi: A^{3} \rightarrow B$ as follows:

$$
\psi(x, y, z)=h(x y z)-h(x) h(y) h(z)
$$

for all $x, y, z \in A$. Then we will show that $\psi(x, y, z)=0$. Consider the mapping $\varphi_{1}: A^{2} \rightarrow B$ defined by

$$
\varphi_{1}(x, y)=h\left((x+y)^{3}\right)-h(x+y)^{3}
$$

for all $x, y \in A$. Then for all $x, y \in A, \varphi_{1}(x, y)=0$. By direct calculation, we get

$$
\varphi_{1}(x, y)=h\left(x^{2} y+x y^{2}\right)-h(x)^{2} h(y)-h(x) h(y)^{2}
$$

for all $x, y \in A$. Now, define the mapping $\varphi_{2}: A^{3} \rightarrow B$ by

$$
\varphi_{2}(x, y, z)=h\left((x+y+z)^{3}\right)-h(x+y+z)^{3}
$$

for all $x, y, z \in A$. Then for all $x, y, z \in A, \varphi_{2}(x, y, z)=0$. Also, by direct calculation, we get

$$
\begin{equation*}
\varphi_{2}(x, y, z)=\varphi_{1}(x, y)+\varphi_{1}(x, z)+\varphi_{1}(y, z)+\psi(x, y, z) \tag{1}
\end{equation*}
$$

for all $x, y, z \in A$. But, since $\varphi_{1}(x, y)=0, \varphi_{1}(x, z)=0, \varphi_{1}(y, z)=0$ for all $x, y, z \in A$,

$$
\begin{equation*}
\varphi_{2}(x, y, z)=0 \tag{2}
\end{equation*}
$$

for all $x, y, z \in A$. By (1) and (2), we obtain

$$
\psi(x, y, z)=0
$$

that is, $h(x y z)=h(x) h(y) h(z)$ for all $x, y, z \in A$. Hence h is a 3-ring homomorphism.

The proof for $n=4$ is similar to $n=3$.
Now, fix $n \in \mathbb{N}$. Recall that h is additive and $h\left(a^{n}\right)=h(a)^{n}$ for all $a \in A$. Let $x_{1}, x_{2}, \ldots, x_{n} \in A$ be arbitrary. Define the mapping ψ by

$$
\psi\left(x_{1}, x_{2}, \ldots, x_{n}\right)=h\left(x_{1} x_{2} \cdots x_{n}\right)-h\left(x_{1}\right) h\left(x_{2}\right) \cdots h\left(x_{n}\right)
$$

for all $x_{1}, x_{2}, \ldots, x_{n} \in A$. Then we will show that $\psi\left(x_{1}, x_{2}, \ldots, x_{n}\right)=0$. Consider the mapping $\varphi_{1}: A^{2} \rightarrow B$ defined by

$$
\varphi_{1}\left(x_{1}, x_{2}\right)=h\left(\left(x_{1}+x_{2}\right)^{n}\right)-h\left(x_{1}+x_{2}\right)^{n}
$$

for all $x_{1}, x_{2} \in A$. Then for all $x_{1}, x_{2} \in A, \varphi_{1}\left(x_{1}, x_{2}\right)=0$. Also, by direct calculation, we get

$$
\begin{aligned}
\varphi_{1}\left(x_{1}, x_{2}\right)= & h\left(n x_{1}^{n-1} x_{2}+\cdots+n x_{1} x_{2}^{n-1}\right) \\
& -\left(n h\left(x_{1}\right)^{n-1} h\left(x_{2}\right)+\cdots+h\left(x_{1}\right) h\left(x_{2}\right)^{n-1}\right) .
\end{aligned}
$$

Now, define the mapping $\varphi_{2}: A^{3} \rightarrow B$ by

$$
\varphi_{2}\left(x_{1}, x_{2}, x_{3}\right)=h\left(\left(x_{1}+x_{2}+x_{3}\right)^{n}\right)-h\left(x_{1}+x_{2}+x_{3}\right)^{n}
$$

for all $x_{1}, x_{2}, x_{3} \in A$. By direct calculation, we get

$$
\varphi_{2}\left(x_{1}, x_{2}, x_{3}\right)=\varphi_{1}\left(x_{1}, x_{2}\right)+\varphi_{1}\left(x_{1}, x_{3}\right)+\varphi_{1}\left(x_{2}, x_{3}\right)+\cdots .
$$

Indeed, with the repetition of this method, we have

$$
\begin{aligned}
\varphi_{n-1}\left(x_{1}, x_{2}, \ldots, x_{n}\right)= & \sum_{i, j=1, i<j}^{n} \varphi_{1}\left(x_{i}, x_{j}\right) \\
& +\sum_{i, j, k=1, i<j<k}^{n} \varphi_{2}\left(x_{i}, x_{j}, x_{k}\right)+\cdots+n!\psi\left(x_{1}, x_{2}, \ldots, x_{n}\right)
\end{aligned}
$$

and since

$$
\begin{aligned}
\varphi_{1}\left(x_{i}, x_{j}\right) & =0, \quad i<j, \\
\varphi_{2}\left(x_{i}, x_{j}, x_{k}\right) & =0, \quad i<j<k, \\
\varphi_{3}\left(x_{i}, x_{j}, x_{k}, x_{l}\right) & =0, \quad i<j<k<l,
\end{aligned}
$$

we have $\psi\left(x_{1}, x_{2}, \ldots, x_{n}\right)=0$ and then

$$
h\left(x_{1} x_{2} \cdots x_{n}\right)=h\left(x_{1}\right) h\left(x_{2}\right) \cdots h\left(x_{n}\right)
$$

that is, h is an n-ring homomorphism, as desired.
By Theorem 2.3 and [5, Theorem 3.2], we deduce the following result, which is more general than [2, Corollary 2.3].

Corollary 2.4. Let $h: A \rightarrow B$ be a linear involution preserving n-Jordan homomorphism between commutative C^{\star}-algebras. If $n \geq 3$ is odd, then h is norm contractive (that is, $\|h\| \leq 1$).

Also, by Theorem 2.3 and [5, Theorem 2.3], we have the following corollary.
Corollary 2.5. Let $h: A \rightarrow B$ be a linear involution preserving n-Jordan homomorphism between commutative C^{\star}-algebras. If $n \geq 4$ is even, then h is completely positive and h is bounded.

By Theorem 2.3, Corollary 2.5 and [5, Theorem 2.5], we have the following result, which is more general than Corollary 2.4.
Corollary 2.6. Let $h: A \rightarrow B$ be a linear involution preserving n-Jordan homomorphism between commutative C^{\star}-algebras. Then h is norm contractive (that is, $\|h\| \leq 1$).

The following corollaries are generalizations of [3, Theorems 2.1 and 2.2].
Corollary 2.7. Let $n \in \mathbb{N}$ be fixed. Suppose A, B are commutative Banach algebras. Let δ and ε be nonnegative real numbers and let p, q be a real numbers such that $(p-1)(q-1)>0, q \geq 0$ or $(p-1)(q-1)>0, q<0$ and $f(0)=0$. Assume that $f: A \rightarrow B$ satisfies the system of functional inequalities

$$
\begin{align*}
\|f(a+b)-f(a)-f(b)\| & \leq \varepsilon\left(\|a\|^{p}+\|b\|^{p}\right) \tag{3}\\
\left\|f\left(a^{n}\right)-f(a)^{n}\right\| & \leq \delta\|a\|^{n q} \tag{4}
\end{align*}
$$

for all $a, b \in A$. Then there exists a unique n-ring homomorphism $h: A \rightarrow B$ such that

$$
\|f(a)-h(a)\| \leq \frac{2 \varepsilon}{\left|2-2^{p}\right|}\|a\|^{p}
$$

for all $a \in A$.
Proof. It follows from Theorem 2.3 and [3, Theorems 2.1 and 2.2].
Corollary 2.8. Let $n \in \mathbb{N}$ be fixed. Suppose A, B are commutative C^{*}-algebras. Let δ and ε be nonnegative real numbers and let p, q be a real numbers such that $(p-1)(q-1)>0, q \geq 0$ or $(p-1)(q-1)>0, q<0$ and $f(0)=0$ such that the inequalities (3) and (4) are valid and $f\left(a^{*}\right)=f(a)^{*}$. Then there exists a unique norm contractive involutive n-ring homomorphism $h: A \rightarrow B$ such that

$$
\|f(a)-h(a)\| \leq \frac{2 \varepsilon}{\left|2-2^{p}\right|}\|a\|^{p}
$$

for all $a \in A$.

Proof. It follows from Theorem 2.3 and [3, Theorem 2.1].

References

[1] J. Bračič and M. S. Moslehian, On automatic continuity of 3-homomorphisms on Banach algebras, Bull. Malays. Math. Sci. Soc. (2) 30 (2007), no. 2, 195-200.
[2] M. Eshaghi Gordji, n-Jordan homomorphisms, Bull. Aust. Math. Soc. 80 (2009), no. 1, 159-164. https://doi.org/10.1017/S000497270900032X
[3] M. Eshaghi Gordji, T. Karimi, and S. Kaboli Gharetapeh, Approximately n-Jordan homomorphisms on Banach algebras, J. Inequal. Appl. 2009 (2019), Art. ID 870843, 8 pp. https://doi.org/10.1155/2009/870843
[4] T. Miura, S.-E. Takahasi, and G. Hirasawa, Hyers-Ulam-Rassias stability of Jordan homomorphisms on Banach algebras, J. Inequal. Appl. 2005, no. 4, 435-441. https: //doi.org/10.1155/JIA. 2005.435
[5] E. Park and J. Trout, On the nonexistence of nontrivial involutive n-homomorphisms of C^{*}-algebras, Trans. Amer. Math. Soc. 361 (2009), no. 4, 1949-1961. https://doi.org/ 10.1090/S0002-9947-08-04648-5
[6] W. Żelazko, A characterization of multiplicative linear functionals in complex Banach algebras, Studia Math. 30 (1968), 83-85. https://doi.org/10.4064/sm-30-1-83-85

Jahangir Cheshmavar
Department of Mathematics
Payame Noor University
P.O. Box 19395-4697, Tehran, Iran

Email address: j_cheshmavar@pnu.ac.ir
Seyed Kamel Hosseini
Department of Mathematics
Payame Noor University
P.O. Box 19395-4697, Tehran, Iran

Email address: kamelhosseini@chmail.ir

Choonkil Park

Research Institute for Natural Sciences
Hanyang University
Seoul 04763, Korea
Email address: baak@hanyang.ac.kr

[^0]: Received August 1, 2018; Accepted November 6, 2019.
 2010 Mathematics Subject Classification. Primary 47B48, 46L05, 46H25, 39B52.
 Key words and phrases. Banach algebra, n-Jordan homomorphism, n-ring homomorphism, n-homomorphism.
 C. Park was supported by Basic Science Research Program through the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology (NRF2017R1D1A1B04032937).

