• Title/Summary/Keyword: combined polymers

Search Result 66, Processing Time 0.026 seconds

Optimization of the Processing Conditions and Prediction of the Quality for Dyeing Nylon and Lycra Blended Fabrics

  • Kuo Chung-Feng Jeffrey;Fang Chien-Chou
    • Fibers and Polymers
    • /
    • v.7 no.4
    • /
    • pp.344-351
    • /
    • 2006
  • This paper is intended to determine the optimal processing parameters applied to the dyeing procedure so that the desired color strength of a raw fabric can be achieved. Moreover, the processing parameters are also used for constructing a system to predict the fabric quality. The fabric selected is the nylon and Lycra blend. The dyestuff used for dyeing is acid dyestuff and the dyeing method is one-bath-two-section. The Taguchi quality method is applied for parameter design. The analysis of variance (ANOVA) is applied to arrange the optimal condition, significant factors and the percentage contributions. In the experiment, according to the target value, a confirmation experiment is conducted to evaluate the reliability. Furthermore, the genetic algorithm (GA) is combined with the back propagation neural network (BPNN) in order to establish the forecasting system for searching the best connecting weights of BPNN. It can be shown that this combination not only enhances the efficiency of the learning algorithm, but also decreases the dependency of the initial condition during the network training. Most of all, the robustness of the learning algorithm will be increased and the quality characteristic of fabric will be precisely predicted.

Paint Spray Mass Spectrometry for the Detection of Additives from Polymers on Conducting Surfaces

  • Paine, Martin R.L.;Barker, Philip J.;Blanksby, Stephen J.
    • Mass Spectrometry Letters
    • /
    • v.3 no.1
    • /
    • pp.25-28
    • /
    • 2012
  • Paint Spray is developed as a direct sampling ionisation method for mass spectrometric analysis of additives in polymer-based surface coatings. The technique simply involves applying an external high voltage (5 kV) to the wetted sample placed in front of the mass spectrometer inlet and represents a much simpler ionisation technique compared to those currently available. The capabilities of Paint Spray are demonstrated herein with the detection of four commercially available hindered amine light stabilisers; TINUVIN${(R)}$770, TINUVIN${(R)}$292, TINUVIN${(R)}$123 and TINUVIN${(R)}$152 directly from thermoset polyester-based coil coatings. Paint Spray requires no sample preparation or pre-treatment and combined with its simplicity requiring no specialised equipment makes it ideal for use by non-specialists. The application of Paint Spray for industrial use has significant potential as sample collection from a coil coating production line and Paint Spray ionisation could enable fast quality control screening at high sensitivity.

Cellulose-based Nanocrystals: Sources and Applications via Agricultural Byproducts

  • Seo, Yu-Ri;Kim, Jin-Woo;Hoon, Seonwoo;Kim, Jangho;Chung, Jong Hoon;Lim, Ki-Taek
    • Journal of Biosystems Engineering
    • /
    • v.43 no.1
    • /
    • pp.59-71
    • /
    • 2018
  • Purpose: Cellulose nanocrystals (CNCs) are natural polymers that have been promoted as a next generation of new, sustainable materials. CNCs are invaluable as reinforcing materials for composites because they can impart improved mechanical, chemical, and thermal properties and they are biodegradable. The purpose of this review is to provide researchers with information that can assist in the application of CNCs extracted from waste agricultural byproducts (e.g. rice husks, corncobs, pineapple leaves). Methods & Results: This paper presents the unique characteristics of CNCs based on agricultural byproducts, and lists processing methods for manufacturing CNCs from agricultural byproducts. Various mechanical treatments (microfluidization and homogenization) and chemical treatments (alkali treatment, bleaching and hydrolysis) can be performed in order to generate nanocellulose. CNC-based composite properties and various applications are also discussed. Conclusions: CNC-based composites from agricultural byproducts can be combined to meet end-use applications such as sensors, batteries, films, food packaging, and 3D printing by utilizing their properties. The review discusses applications in food engineering, biological engineering, and cellulose-based hydrogels.

Electrical and Optical Properties of Newly Synthesised Low Bandgap Polymer with Protic and Aprotic Ionic Liquids (양자성, 비양자성 이온성 액체와 새롭게 합성된 낮은 밴드갭을 갖는 고분자와의 상호작용에 의한 전기적,광학적 특성 연구)

  • Kim, Joong-Il;Kim, In-Tae
    • Journal of the Korean Applied Science and Technology
    • /
    • v.30 no.3
    • /
    • pp.461-471
    • /
    • 2013
  • Use of low bandgap polymers is the most suitable way to harvest a broader spectrum of solar radiations for solar cells. But, still there is lack of most efficient low bandgap polymer. In order to solve this problem, we have synthesised a new low bandgap polymer and investigated its interaction with the ILs to enhance its conductivity. ILs may undergo almost unlimited structural variations; these structural variations have attracted extensive attention in polymer studies. In addition to this, UV-Vis spectroscopy, confocal Raman spectroscopy and FT-IR spectroscopy results have revealed that all studied ILs (tributylmethylammonium methyl sulfate [$N_{1444}$][$MeSO_4$] from ammonium family) and 1-methylimidazolium chloride ([MIM]Cl, and 1-butyl-3-methylimidazolium chloride [Bmim]Cl from imidazolium family) has potential to interact with polymer. Further, protic ILs shows enhanced conductivity than aprotic ILs with low bandgap polymer. This study provides the combined effect of low bandgap polymer and ILs that may generate many theoretical and experimental opportunities.

Design strategy of hybrid stay cable system using CFRP and steel materials

  • Xiong, Wen;Cai, C.S.;Xiao, Rucheng;Zhang, Yin
    • Steel and Composite Structures
    • /
    • v.13 no.1
    • /
    • pp.47-70
    • /
    • 2012
  • To enhance cable stiffness, this paper proposed a combined application of carbon fiber reinforced polymers (CFRP) and steel materials, resulting in a novel type of hybrid stay cable system especially for the cable-stayed bridges with main span lengths of 1400~2800 m. In this combination, CFRP materials can conserve all their advantages such as light weight and high strength; while steel materials help increase the equivalent stiffness to compensate for the low elastic modulus of CFRP materials. An increase of the equivalent stiffness of the hybrid stay cable system could be further obtained with a reasonable increase of its safety factor. Following this concept, a series of parametric studies for the hybrid stay cable system with the consideration of stiffness and cost were carried out. Three design strategies/criteria, namely, best equivalent stiffness with a given safety factor, highest ratio of equivalent stiffness to material cost with a given safety factor, and best equivalent stiffness under a given cost were proposed from the stiffness and cost viewpoints. Finally, a comprehensive design procedure following the proposed design strategies was suggested. It was shown that the proposed hybrid stay cable system could be a good alternative to the pure CFRP or traditional steel stay cables in the future applications of super long span bridges.

Crystallization Behavior of Polymers as Viewed from the Molecular Level

  • Tashiro, Kohji;Sasaki, Sono;Ueno, Yoko;Yoshioka, Akiko;Kobayashi, Masamichi
    • Macromolecular Research
    • /
    • v.8 no.3
    • /
    • pp.103-115
    • /
    • 2000
  • The structural changes viewed from the molecular level have been investigated for the isothermal crystallization phenomena of polyethylene (PE) and the solvent-induced crystallization phenomenon of syndiotactic polystyrene (sPS) glassy sample. The data, which were collected by the time-resolved measurements of Fourier-transform infrared spectra, Raman spectra, synchrotron-sourced small-angle X-ray scattering, wide-angle X-ray scattering, and so on, were combined together to extract the detailed structural information in these phase transition phenomena. In the case of PE, the isothermal crystallization from the melt to the orthorhombic form was found to occur via the conformationally-disordered trans chain form, followed by the formation of the lamellar stacking structure of regular orthorhombic-type crystals. In the case of sPS, the amorphous chains in the glassy sample were found to enhance the mobility through the interaction with the injected solvent molecules, which act as a trigger to cause the conformational ordering from the random coil to the regular T$_2$G$_2$-type helical form. The thus created short helical segments were found to grow into longer helices, which gathered together to form the crystallites, as revealed by the organized coupling of the infrared, Raman and X-ray scattering data.

  • PDF

Fabrication and Characteristics of FET Type Semiconductor Urea and Glucose Sensor Employing Photolithography Techniques (사진식각기술을 이용한 FET형 반도체 요소 및 포도당센서의 제조와 그 특성)

  • Cho, Byung-Woog;Kim, Chang-Soo;Seo, Hwa-Il;Sohn, Byung-Ki
    • Journal of Sensor Science and Technology
    • /
    • v.1 no.2
    • /
    • pp.101-106
    • /
    • 1992
  • pH-ISFETs, the semiconductor pH sensors, were combined with immobilized enzyme membranes to prepare FET type urea and glucose sensors and its operational characteristics were investigated. Photolithography techniques were applied to immobilize enzymes on the $H^{+}$ sensing membrane of the pH-ISFET with photo-sensitive polymers, PVA-SbQ. Fabricated urea and glucose sensors could determine $0.5{\sim}50{\;}mg/dl$ urea concentrations and $10{\sim}1000{\;}mg/dl$ glucose concentrations, respectively.

  • PDF

Fabrication and application of post surgical anti-adhesion barrier using bio-compatible materials (생체 적합성 재료를 이용한 수술후 유착 방지막의 제작과 응용)

  • Park S.H.;Kim H.C.;Yang D.Y.;Kim T.K.;Park T.K.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.203-204
    • /
    • 2006
  • Studies on some biodegradable polymers and other materials such as hydrogels have shown the promising potential for a variety of surgical applications. Postoperative adhesion caused by the natural consequence of surgical wound healing results in problems of the repeated surgery. Recently, scientists have developed absorbable anti-adhesion barriers that can protect a tissue from adhesion in case they are in use; however, they are dissolved when no longer needed. Although these approaches have been attempted to fulfill the criteria for adhesion prevention, none can perfectly prevent adhesions in all situations. Overall of this work, a new method to fabricate an anti-adhesion membrane using biodegradable polymer and hydrogel has been developed. The ideal barrier for preventing postoperative adhesion would have the following properties; it should be (i) resorbable (ii) non-reactive (iii) easy to apply (iv) capable of being fixed in position. In order to fulfill these properties, we adopted solid freeform fabrication method combined with surface modification which includes the hydrogel coating, therefore, inner or outer structure can be controlled and the property of anti adhesion can be improved.

  • PDF

Oral Bioadhesive Gels of Recombinant Human Epidermal Growth Factor(rhEGF) for the Healing of Gastric Ulcers (재조합 상피세포성장인자를 함유한 경구 점착성 겔제의 위궤양 치유효과)

  • Han, Kun;Lee, Su-Jin;Kim, Jae-Hwan;Chung, Youn-Bok
    • Journal of Pharmaceutical Investigation
    • /
    • v.28 no.2
    • /
    • pp.99-107
    • /
    • 1998
  • The objective of this study was to develop effective oral formulations of rhEGF for gastric ulcer healing using polycarbophil. hydroxypropylcellulose(HPC) and sucralfate as its bioadhesive bases. Cytoprotective effects of rhEGF, cell proliferation and differentiation. on the ulcers induced by ethanol or acetic acid in rats were studied. rhEGF release from HPC formulation was much faster than that from polycarbophil formulation. HPC formulation combined with small amount of sucralfate showed much slower release of rhEGF than only HPC base only. rhEGF preparations with bioadhesive polymers showed better effects on the healing of gastric ulcers than EGF solution when administered orally. When rhEGF preparations were administered at once and the animals were under starvation, polycarbophil formulation showed better effect on gastric ulcers than HPC formulation. Otherwise, when rhEGF preparations were given more than three times and the rats were fed normally, HPC formulation showed good healing efficacy of ulcers compared to polycarbophil formulation. rhEGF showed dose-dependent effect on the healing of both chronic and acute ulcers.

  • PDF

Fabrication of Microstructures for Conductive Polymer Actuators Using MEMS Process (MEMS 공정을 이용한 전도성 고분자 액추에이터용 마이크로 구조물의 제작)

  • Lee, Seung-Ki;Jung, Seng-Hwan
    • Journal of Sensor Science and Technology
    • /
    • v.12 no.4
    • /
    • pp.156-163
    • /
    • 2003
  • Polypyrrole microactuators have been fabricated by the standard surface micromachining method combined with the electropolymerization of polypyrrole. The fundamental structure to verify the feasibility of the fabrication process is polypyrrole cantilever. Based on these process, polypyrrole grippers and valves for the manipulation of the cell have been fabricated. Grippers have the structure of bone and muscle which are rigid polymers and polypyrrole, respectively. Valves have the assembled structure of channels with polypyrrole cantilevers. The proposed fabrication process and structures are expected to be used for bio-related applications, for example, the cell manipulation.