DOI QR코드

DOI QR Code

Paint Spray Mass Spectrometry for the Detection of Additives from Polymers on Conducting Surfaces

  • Paine, Martin R.L. (ARC Centre of Excellence for Free Radical Chemistry and Biotechnology School of Chemistry, University of Wollongong) ;
  • Barker, Philip J. (BlueScope Steel Research) ;
  • Blanksby, Stephen J. (ARC Centre of Excellence for Free Radical Chemistry and Biotechnology School of Chemistry, University of Wollongong)
  • Received : 2012.03.08
  • Accepted : 2012.03.13
  • Published : 2012.03.15

Abstract

Paint Spray is developed as a direct sampling ionisation method for mass spectrometric analysis of additives in polymer-based surface coatings. The technique simply involves applying an external high voltage (5 kV) to the wetted sample placed in front of the mass spectrometer inlet and represents a much simpler ionisation technique compared to those currently available. The capabilities of Paint Spray are demonstrated herein with the detection of four commercially available hindered amine light stabilisers; TINUVIN${(R)}$770, TINUVIN${(R)}$292, TINUVIN${(R)}$123 and TINUVIN${(R)}$152 directly from thermoset polyester-based coil coatings. Paint Spray requires no sample preparation or pre-treatment and combined with its simplicity requiring no specialised equipment makes it ideal for use by non-specialists. The application of Paint Spray for industrial use has significant potential as sample collection from a coil coating production line and Paint Spray ionisation could enable fast quality control screening at high sensitivity.

Keywords

References

  1. Mulligan, C. C.; Talaty, N.; Cooks, R. G. Chem. Commun. 2006, 1709.
  2. Keil, A.; Talaty, N.; Janfelt, C.; Noll, R. J.; Gao, L.; Ouyang, Z.; Cooks, R. G. Anal. Chem. 2007, 79, 7734. https://doi.org/10.1021/ac071114x
  3. Wells, J. M.; Roth, M. J.; Keil, A. D.; Grossenbacher, J. W.; Justes, D. R.; Patterson, G. E.; Barket Jr, D. J. J. Am. Soc. Mass Spectrom. 2008, 19, 1419. https://doi.org/10.1016/j.jasms.2008.06.028
  4. Huang, G.; Gao, L.; Duncan, J.; Harper, J.; Sanders, N.; Ouyang, Z.; Cooks, R. J. Am. Soc. Mass Spectrom. 2009, 21, 132. https://doi.org/10.1016/j.jasms.2009.09.018
  5. Harris, G. A.; Galhena, A. S.; Fernandez, F. M. Anal. Chem. 2011, 83, 4508. https://doi.org/10.1021/ac200918u
  6. Cooks, R. G.; Ouyang, Z.; Takats, Z.; Wiseman, J. M. Science 2006, 311, 1566. https://doi.org/10.1126/science.1119426
  7. Harris, G. A.; Nyadong, L.; Fernandez, F. M. Analyst 2008, 133, 1297. https://doi.org/10.1039/b806810k
  8. Weston, D. J. Analyst 2010, 135, 661. https://doi.org/10.1039/b925579f
  9. Weston, D. J.; Bateman, R.; Wilson, I. D.; Wood, T. R.; Creaser, C. S. Anal. Chem. 2005, 77, 7572. https://doi.org/10.1021/ac051277q
  10. Hopfgartner, G.; Bourgogne, E. Mass Spectrom. Rev. 2003, 22, 195. https://doi.org/10.1002/mas.10050
  11. Shiea, J.; Huang, M. Z.; Hsu, H. J.; Lee, C. Y.; Yuan, C. H.; Beech, I.; Sunner, J. Rapid Commun. Mass Spectrom. 2005, 19, 3701. https://doi.org/10.1002/rcm.2243
  12. Nemes, P.; Vertes, A. Anal. Chem. 2007, 79, 8098. https://doi.org/10.1021/ac071181r
  13. Thunig, J.; Flo, L.; Pedersen-Bjergaard, S.; Hansen, S. H.; Janfelt, C. Rapid Commun. Mass Spectrom. 2012, 26, 133. https://doi.org/10.1002/rcm.5315
  14. Ifa, D. R.; Jackson, A. U.; Paglia, G.; Cooks, R. G. Anal. Bioanal. Chem. 2009, 394, 1995. https://doi.org/10.1007/s00216-009-2659-2
  15. Takats, Z.; Cotte-Rodriguez, I.; Talaty, N.; Chen, H.; Cooks, R. G. Chem. Commun. 2005, 1950.
  16. Paine, M. R. L.; Barker, P. J.; Blanksby, S. J. Analyst 2011, 136, 904. https://doi.org/10.1039/c0an00656d
  17. Paine, M. R. L.; Barker, P. J.; Maclauglin, S. A.; Mitchell, T. W.; Blanksby, S. J. Rapid Commun. Mass Spectrom. 2012, 26, 412. https://doi.org/10.1002/rcm.6116
  18. Hodgson, J. L.; Coote, M. L. Macromolecules 2010, 43, 4573. https://doi.org/10.1021/ma100453d
  19. Liu, J.; Wang, H.; Manicke, N. E.; Lin, J.-M.; Cooks, R. G.; Ouyang, Z. Anal. Chem. 2010, 82, 2463. https://doi.org/10.1021/ac902854g
  20. Wang, H.; Liu, J.; Cooks, R. G.; Ouyang, Z. Angew. Chem. Int. Ed. 2010, 49, 877. https://doi.org/10.1002/anie.200906314
  21. Schaller, C.; Rogez, D.; Braig, A. J. Coat. Technol. Res. 2009, 6, 81. https://doi.org/10.1007/s11998-008-9130-8

Cited by

  1. Quantitative analysis of hindered amine light stabilizers by CZE with UV detection and quadrupole TOF mass spectrometric detection vol.35, pp.20, 2014, https://doi.org/10.1002/elps.201400265
  2. Transferring Ions from Solution to the Gas Phase: The Two Basic Principles vol.28, pp.11, 2017, https://doi.org/10.1007/s13361-017-1779-8
  3. Direct ionization methods in mass spectrometry: An overview vol.890, 2015, https://doi.org/10.1016/j.aca.2015.07.012
  4. Ambient ionisation mass spectrometry for the characterisation of polymers and polymer additives: A review vol.808, 2014, https://doi.org/10.1016/j.aca.2013.10.001
  5. Droplet Spray Ionization from a Glass Microscope Slide: Real-Time Monitoring of Ethylene Polymerization vol.87, pp.16, 2015, https://doi.org/10.1021/acs.analchem.5b02390
  6. Advances in the determination of hindered amine light stabilizers – A review vol.933, 2016, https://doi.org/10.1016/j.aca.2016.06.001
  7. Mass spectrometry as a useful tool for the analysis of stabilizers in polymer materials vol.50, 2013, https://doi.org/10.1016/j.trac.2013.04.012
  8. Biochip Spray: Simplified Coupling of Surface Plasmon Resonance Biosensing and Mass Spectrometry vol.89, pp.3, 2017, https://doi.org/10.1021/acs.analchem.6b04012
  9. Thin layer chromatography–spray mass spectrometry: a method for easy identification of synthesis products and UV filters from TLC aluminum foils vol.406, pp.15, 2014, https://doi.org/10.1007/s00216-014-7639-5