Browse > Article
http://dx.doi.org/10.12925/jkocs.2013.30.3.461

Electrical and Optical Properties of Newly Synthesised Low Bandgap Polymer with Protic and Aprotic Ionic Liquids  

Kim, Joong-Il (Department of Chemistry, Kwangwoon University)
Kim, In-Tae (Department of Chemistry, Kwangwoon University)
Publication Information
Journal of the Korean Applied Science and Technology / v.30, no.3, 2013 , pp. 461-471 More about this Journal
Abstract
Use of low bandgap polymers is the most suitable way to harvest a broader spectrum of solar radiations for solar cells. But, still there is lack of most efficient low bandgap polymer. In order to solve this problem, we have synthesised a new low bandgap polymer and investigated its interaction with the ILs to enhance its conductivity. ILs may undergo almost unlimited structural variations; these structural variations have attracted extensive attention in polymer studies. In addition to this, UV-Vis spectroscopy, confocal Raman spectroscopy and FT-IR spectroscopy results have revealed that all studied ILs (tributylmethylammonium methyl sulfate [$N_{1444}$][$MeSO_4$] from ammonium family) and 1-methylimidazolium chloride ([MIM]Cl, and 1-butyl-3-methylimidazolium chloride [Bmim]Cl from imidazolium family) has potential to interact with polymer. Further, protic ILs shows enhanced conductivity than aprotic ILs with low bandgap polymer. This study provides the combined effect of low bandgap polymer and ILs that may generate many theoretical and experimental opportunities.
Keywords
New low bandgap polymer; Ionic liquids(ILs); Interaction; H-Bonding Conductivity;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Tautz R, Como E. D, Limmer T, Feldmann J, Egelhaaf H. J, von Hauff E, Lemaur V, Beljonne D, Yilmaz S, Dumsch I, Allard S, Scherf U, Structural Correlations in The Generation of Polaron Pairs in Low-Bandgap Polymers for Photovoltaics, Nature Communications, 3:970. Doi: 10.1038/ncomms1967, 1-8 (2013).
2 Boudreault P. T, Najari A, Leclerc M, Processable Low-Bandgap Polymers for Photovoltaic Applications" Chem. Mater, 23, 456-469 (2011).   DOI
3 Hou J, Chen H-Y, Zhang S, Li G, Yang Y, Synthesis, Characterization, and Photovoltaic Properties of a Low Band Gap Polymer Based on Silole-Containing Polythiophenes And 2,1,3- Benzothiadiazole, J. Am. Chem. Soc, 130, 16144-16145 (2008).   DOI
4 Liang Y, Feng D, Wu Y, Tsai S. T, Li G, Ray C, Yu L, Highly Efficient Solar Cell Polymers Developed Via Fine-Tuning of Structural and Electronic Properties, J. Am. Chem. Soc, 131, 7792-7799 (2009)   DOI
5 Bijleveld J. C, Gevaerts V. S, Nuzzo D. D, Turbiez M, Mathijssen S. G. J, de Leeuw D. M, Wienk M. M, Janssen R. A. J, Efficient Solar Cells Based on an Easily Accessible Diketopyrrolopyrrole Polymer, Adv. Mater, 22, E242-E246 (2010).   DOI
6 Piliego C, Holcombe T. W, Douglas J. D, C. H. Woo, Beaujuge P. M, Frechet J. M. J, Synthetic Control of Structural Order in N-Alkylthieno[3,4-c] Pyrrole-4,6-dione-Based Polymers for Efficient Solar Cells, J. Am. Chem. Soc, 1. 132, 7595-7597 (2010).
7 Pawley, J. B, Handbook of Biological Confocal Microscopy, Kluwer Academic Publisher s, Dordrecht, (1995).
8 Crispin, X. Jakobsson, F. L. E. Crispin, A. Grim, P. C. M. Andersson, P. Volodin, A. van Haesendock, C. Van der Auweraer, M.; Salaneck, W. R, Berggren M, The Origin of the High Conductivity of Poly(3,4-ethylenedioxythiophene)-Poly(styrenesulfonate) (PEDOT−PSS) Plastic Electrodes, Chem. Mater, 18, 4354-4360 (2006).   DOI
9 Crispin X, Marciniak S, Osikowicz W, Zotti G, van der Gon A. W. D, Louwet F, Fahlman M, Groenendaal L, Schryver F. D, Salaneck W. R, Conductivity, morphology, interfacial chemistry, and stability of poly(3,4-ethylene dioxythiophene)-poly(styrene sulfonate): A photoelectron spectroscopy study, J. Polym. Sci. Part B. Polym. Phys, 41, 2561-2583 (2003).   DOI
10 Ouyang B. Y, Chi C. W, Chen F. C, Xu Q, Yang Y, High-Conductivity Poly(3,4-ethylenedio xythiophene):Poly (styrene sulfonate) Film and Its Application in Polymer Optoelectronic Devices, Adv. Funct. Mater, 15, 203-208 (2005).   DOI
11 Winterton N, Solubilization of polymers by ionic liquids J Mater Chem 16, 4281-4293 (2006).   DOI
12 Cheng H, Zhu C, Huang B, Lu M, Yang Y, Synthesis and Electrochemical Characterization of PEO-based Polymer Electrolytes With Room Temperature Ionic Liquids, Electrochemical Acta, 52, 5789-5794 (2007).   DOI
13 Ohno H, Yoshizawa M, Ogihara W, Development of new class of ion conductive polymers based on ionic liquids Electrochemical Acta, 50, 255-261 (2004).   DOI
14 J. Y. Kim, J. H. Jung, D. E. Lee, J. Joo, Enhancement of Electrical Conductivity of Poly(3,4-ethylenedioxythiophene)/poly(4-styrenesulfonate) by a Change of Solvents, J. Synth. Met, 126, 311-316 (2002).   DOI
15 Ouyang J, Xu QF, Chu CW, Yang Y, Li G, Shinar J, On the Mechanism Of Conductivity Enhancement in Poly(3,4-ethylenedioxythiophene):Poly(styrene sulfonate) Film through Solvent Treatment, J. Polymer, 45, 8443-8450 (2004).   DOI
16 Rajput DS, Yamada K, Sekhon SS, Study of Ion Diffusional Motion in Ionic Liquid-Based Polymer Electrolytes by Simultaneous Solid State NMR and DTA J. Phys. Chem. B, 117, 2475-2481 (2013).   DOI
17 Zhao Q, Soll S, Antonietti M, Yuan J, Organic Acids can Crosslink Poly(ionic liquid)s into Mesoporous Polyelectrolyte Complexes, Polym. Chem, 4, 2432-2435 (2013).   DOI
18 M. J. Park, I. Choi , J. Hong, O. Kim, Polymer Electrolytes Integrated with Ionic Liquids for Future Electrochemical Devices, J. Appl. Polym. Sci, DOI: 10. 1002/APP.39064 (2013).
19 Qiu B, Lin B, Yan F, Ionic Liquid/poly(ionic liquid)-Based Electrolytes for Energy Devices, 62, 335-337 (2013).
20 de Carvalho R. N. L, Lourenco N. M. T, Gomes P. M. V, da Fonseca1 L. J. P, Swelling Behavior of Gelatin-Ionic Liquid Functional Polymers" J. Poly. Sci. Part B: Poly Phys 51, 817-825 (2013).   DOI
21 Ye YS, Rick J, Hwang, BJ Ionic Liquid Polymer Electrolytes, J. Mater. Chem. A, 1, 2719-243 (2013).   DOI
22 Kawano R, Matsui H, Matsuyama C, Sato A, Susan MABH, Tanabe N, Watanabe M, High Performance Dye-Sensitized Solar Cells Using Ionic Liquids as their Electrolytes, J. Photochem. Photobiol A: Chem, 164, 87-92 (2004).   DOI
23 Lee J, Panzer M. J, He Y, Lodge T. P, Frisbie C. D, Ion Gel Gated Polymer Thin-Film Transistors, J. Am. Chem. Soc, 129, 4532-4533 (2007).   DOI
24 Liu Y, Lu C, Twigg S, Ghaffari M, Lin J, Winograd, and Q. M, Zhang , Direct Observation of Ion Distributions near Electrodes in Ionic Polymer Actuators Containing Ionic Liquids, Sci.Rep-U.K, 3, 1-7 (2013).
25 J. H. Shin, Henderson W. A, Scaccia S, Prosini P. P, Passerini S, Solid-state Li/LiFePO4 Polymer Electrolyte Batteries Incorporating an Ionic Liquid Cycled at $40^{\circ}C$, J. Power. Sources 156, 560-566 (2006).   DOI
26 Attri P, Reddy PM, Venkatesu P, Kumar A, Hofman T, Measurements and Molecular Interactions for N,N-Dimethylformamide with Ionic Liquid Mixed Solvents, J. Phys. Chem. B 114, 6126-6133 (2010).   DOI
27 Welton T, Room-temperature Ionic Liquids Solvents for Synthesis and Catalysis, Chem. Rev, 99, 2071-2084 (1999).   DOI
28 Seddon KR Ionic Liquids for Clean Technology, J. Chem. Technol. Biotechnol, 68, 351-356 (1997).   DOI
29 Greaves T. L, Drummond C Protic Ionic Liquids: Properties and Applications. J. Chem. Rev, 108, 206-237 (2008).   DOI
30 Rogers R. D, Seddon K. R, Ionic liquids--solvents of the future?, Science, 302, 792-793 (2003).   DOI
31 Davis J. H, "Task-Specific Ionic Liquids" Chem Lett 33, 1072-1077 (2004).   DOI
32 Attri P, Venkatesu P, Kumar A, Activity and Stability of ${\alpha}$-Chymotrypsin in Biocompatible Ionic Liquids: Enzyme Refolding by Triethyl Ammonium Acetate, Phys. Chem, 13, 2788-2796 (2011).
33 Maia F. M, Rodriguez O, Macedo E. A, Free Energy of Transfer of a Methylene Group in Biphasic Systems of Water And Ionic Liquids [C3mpip][NTf2], [C3mpyrr][NTf2], and [C4mpyrr][NTf2], Ind. Eng. Chem. Res, 51, 8061-8068 (2012).   DOI
34 Chiappe C, Pomelli C. S, Rajamani S, Influence of Structural Variations in Cationic and Anionic Moieties on the Polarity of Ionic Liquids J. Phys. Chem. B, 115, 9653-9661 (2011).
35 Attri P, Venkatesu P, Kumar A, Water and a Protic Ionic Liquid Acted as Refolding Additives for Chemically Denatured Enzymes, Org. Biomol. Chem, 10, 7475-7478 (2012).   DOI
36 Noda A, Bin Hasan Susan A, Kudo K, Mitsushima S, Hayamizu K, Watanabe 1. M, Brønsted Acid−Base Ionic Liquids as Proton-Conducting Nonaqueous Electrolytes, J. Phys. Chem. B, 107, 4024-4033 (2003).   DOI
37 Hardelin L, Thunberg J, Perzon E, Westman G, Walkenstrom P, Gatenholm P, Electrospinning of Cellulose Nanofibers From Ionic Liquids: The Effect of Different Cosolvents, J. Appl. Polym. Sci, 125, 1901-1909 (2012).   DOI
38 Megaw J, Busetti A, Gilmore BF, Isolation and Characterisation of 1-Alkyl-3-Methylimidazo lium Chloride Ionic Liquid-Tolerant and Biodegrading Marine Bacteria, Plos One, 8, e60806. doi:10.1371/journal.pone.0060806 (2013)   DOI
39 Hou X. D, Liu Q. P, Smith T. J, Li N, Zo M. H, Evaluation of Toxicity and Biodegradability of Cholinium Amino Acids Ionic Liquids, Plos One, 8, e59145. doi:10.1371/journal.pone.0059145 (2013)   DOI
40 Martinelli A, Matic A, Jacobsson P, Borjesson L, Navarra MA, Panero S, Scrosati B A Structural Study on Ionic-Liquid-Based Polymer Electrolyte Membranes. J Electroche m Soc 154, G183-G187 (2007) .   DOI
41 Sekhon S. S, J. S Park, E. Cho, Y. G. Yoon, C. S. Kim, W. Y. Lee, Morphology Studies of High Temperature Proton Conducting Membranes Containing Hydrophilic/Hydrophob ic Ionic Liquids, Macromolecules, 42, 2054-2062 (2009).   DOI
42 Susan M, Kaneko T, Noda A, Watanabe M, Ion Gels Prepared by in Situ Radical Poly merization of Vinyl Monomers in an Ionic Liquid and Their Characterization as Polymer Electrolytes, J. Am. Chem. Soc, 127, 4976-4983 (2005).   DOI
43 Simone PM, Lodge T. P, Micellization of PS-PMMA Diblock Copolymers in an Ionic Liquid, Macromol. Chem. Phys, 208, 339-348 (2007).   DOI
44 He Y, Li Z, Simone P, Lodge T. P, Self-Assembly of Block Copolymer Micelles in an Ionic Liquid, J. Am. Chem. Soc, 128, 2745-2750 (2006).   DOI
45 He Y, Lodge T. P, The Micellar Shuttle: Thermoreversible, Intact Transfer of Block Copolymer Micelles between an Ionic Liquid and Water, J. Am. Chem. Soc, 128, 12666-12667 (2006).   DOI
46 He Y. Y, Boswell P. G, Buhlmann P, Lodge T. P, Ion Gels by Self-Assembly of a Triblock Copolymer in an Ionic Liquid, J. Phys. Chem. B, 111, 4645-4652 (2007).   DOI
47 Bai Z, He Y, Lodge T. P, Block Copolymer Micelle Shuttles with Tunable Transfer Temperatures between Ionic Liquids and Aqueous Solutions, Langmuir, 24, 5284-5290 (2008).   DOI
48 Simone P. M, Lodge T. P, Lyotropic Phase Behavior of Polybutadiene−Poly(ethylene oxide) Diblock Copolymers in Ionic Liquids, Macromolecules, 41, 1753-1759 (2008).   DOI
49 Gwee L, Choi J-H, Winey K. I, Elabd Y. A, Block Copolymer/Ionic Liquid Films: The Effect of Ionic Liquid Composition on Morphology and Ion Conduction, Polymer, 5, 5516-5524 (2010).
50 Cheng H, Zhu C, Huang B, Lu M, Yang Y, Synthesis and Electrochemical Characterization of PEO-Based Polymer Electrolytes with Room Temperature Ionic Liquids, Electrochemical Acta, 52, 5789-5794 (2007).   DOI
51 Thomas E. Sutto, Hydrophobic and Hydrophilic Interactions of Ionic Liquids and Polymers in Solid Polymer Gel Electrolytes J. Electrochem. Soc, 154, P101-P107 (2007).   DOI
52 1. Dobbelin M, Marcilla R, Salsamendi M, Pozo-Gonzalo C, Carrasco PM, Pomposo JA, Mecerreyes D, Influence of Ionic Liquids on the Electrical Conductivity and Morphology of PEDOT:PSS Films, Chem. Mater, 19, 2147-2149 (2007).   DOI
53 Bundgaard E, Krebs F. C, Low Band Gap Polymers for Organic Photovoltaics, Sol Energy Mater Sol Cells, 91, 954-985 (2007).   DOI
54 Hoppe H, Sariciftci N. S, Morphology of polymer/fullerene bulk heterojunction solar cells, J. Mater. Chem, 16, 45-61 (2006).   DOI
55 Brabec C. J, Organic photovoltaics: technology and market, Sol Energy Mater Sol Cells, 83, 273-292 (2004).   DOI
56 Krebs F. C, Spanggaard H, Significant Improvement of Polymer Solar Cell Stability, Chem. Mater, 17, 5235-5237 (2005).   DOI
57 Reyes-Reyes M, Kim K, Dewald J, Lopez-Sandoval R, Avadhanula A, Curran S, Carroll D. L, Meso-Structure Formation for Enhanced Organic Photovoltaic Cells, Org. Lett, 7, 5749-5752 (2005).   DOI
58 I. T. Kim, J. H. Lee, S. W. Lee, New Low Band Gap Conjugated Conducting Poly (2-nonylthieno[3,4-d]thiazole): Synthesis, Characterization, and Properties, Bul. Korean. Chem. Soc, 28, 2511-2513 (2007).   DOI
59 Hou J, Chen H. Y, Zhang S, Chen R. I, Yang Y, Wu Y, Li G, Synthesis of a Low Band Gap Polymer and Its Application in Highly Efficient Polymer Solar Cells, J. Am. Chem. Soc, 131, 15586-15587 (2009).   DOI
60 J. H. Kim, C. E. Song, I. N. Kang, W. S. Shin, D. H. Hwang, A Highly Crystalline Low Band-Gap Polymer Consisting of Perylene and Diketopyrrolopyrrole for Organic Photovoltaic Cells, Chem. Commun, 49, 3248-3250 (2013).   DOI
61 Dou L, You J, Yang J, Chen C-C, He Y, Murase S, Moriarty T, Emery K, Li G, Yang Y Tandem Polymer Solar Cells Featuring a Spectrally Matched Low-Bandgap Polymer, Nature Photonics, 6, 180-185(2012).   DOI