• Title/Summary/Keyword: collagen biosynthesis

Search Result 52, Processing Time 0.03 seconds

Anti-wrinkle Effect by Ginsenoside Rg3 Derived from Ginseng (인삼유래 Ginsenoside Rg3에 의한 항-주름 효과)

  • 김성우;정지헌;조병기
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.30 no.2
    • /
    • pp.221-225
    • /
    • 2004
  • The root of Panax ginseng C. A. Meyer has been used as a traditional anti-aging and anti-wrinkle agent in the Orient. However, it is still unknown which component of ginseng is effective at suppressing wrinkle formation. Recently at least twenty ginsenosides regarded as the main active ingredients of ginseng have been isolated. Among them, we examined the effect of ginsenoside Rg3 on dermal ECM metabolism to elucidate the mechanism of anti-wrinkle by ginseng. In our study, to investigate the anti-wrinkle effect of the ginsenoside Rg3, ECM component and growth factor in dennis were evaluated by ELISA assay. Ginsenoside Rg3 was found to stimulate type I procollagen and fibronectin (FN) biosynthesis in a dose-dependent manner in normal human fibroblast culture (p < 0.05, n =3), and dose-dependently enhance TGF- ${\beta}$1 level (p < 0.05, n =3). In RT-PCR analysis mRNA level of c-Jun, a member of AP-1 transcription factor, was reduced by ginsenoside Rg3 in normal human fibroblast culture. These results indicate that ginsenoside Rg3 stimulates type I collagen and FN synthesis through the changes of TGF - ${\beta}$1 and AP-1 expression in fibroblasts.

Study on Reinforcing Skin Barrier and Anti-aging of Exosome-like Nanovesicles Isolated from Malus domestica Fruit Callus (사과 캘러스로부터 분리된 엑소좀-유사 Nanovesicles 의 피부 장벽 및 피부 노화 방지 개선 연구)

  • Seo, Yu-Ri;Lee, Kwang-Soo;Kang, Yong-Won
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.47 no.2
    • /
    • pp.139-145
    • /
    • 2021
  • Plant-derived exosome-like nanovesicles (PELNs) are known to include various biological activities and possess high biocompatibility. Because PELNs can influence immune responses, cell differentiation, and proliferation regulation, they can be applied in multiple industries. However, the studies on the skin physiological of exosome-like nanovesicles derived from plant callus are insignificant compared to nanovesicles derived from mammalian cells. In this study, callus was induced from apple fruit (Malus domestica), and exosome-like nanovesicles (ACELNs) were isolated for improving skin barrier and anti-aging. The yield of ACELNs was 6.42 × 109 particles/mL, and the particle size was ranged from 100 to 200 nm. HDF cells and HaCaT cells were concentration-dependent, increased in cell, and decreased in cytotoxicity. The cornified envelope formation was significantly increased compared to the control group. The COL1A1 expression and the FBN1 expression in HDF cells were increased. In addition, the ACELNs promoted collagen biosynthesis in UVA-irradiated HDF cells. These results might be considered as potential materials that could improve skin barrier and prevent skin aging.

Anti-wrinkling Effects of Juniperus rigida Sied (노간주나무(Juniperus rigida Sieb.)의 주름개선 효과)

  • Jun, Hye-Ji;Lee, Soo-Yeon;Kim, Jeung-Hoan;An, Bong-Jeun;Lee, Jin-Young
    • Microbiology and Biotechnology Letters
    • /
    • v.41 no.4
    • /
    • pp.449-455
    • /
    • 2013
  • Human skin is constantly exposed to environmental conditions such as UV rays, polluted air, and chemical products. UV rays, in particular, affect skin in many ways causing wrinkles, fine wrinkles, rough skin, and xeroderma through a skin aging process. The purpose of this study was to investigate the anti-wrinkling effect of Juniperus rigida Sieb., derived from a common cedar tree found the world over. Measuring the elastase to investigate wrinkling efficacy, it was shown that at a concentration level of $1,000{\mu}g/ml$ of the two extracts, the water extract exhibited a lower than 10% inhibition activity, while the ethanol extract exhibited a 68.5% inhibition activity. Collagenase inhibition activity in the water extract and ethanol extract were 44.9% in the former and 97.2% in the latter extract, which in the case of the ethanol extract, is similar to ascorbic acid (99.6%). Moreover, measuring the biosynthesis of collagen by fibroblast, a concentration level of $50{\mu}g/ml$ of ethanol extract produced 151.52% of biosynthetic promotion, proving that the ethanol extract acts as a superb anti-wrinkling agent. The result of an investigation conducted on the influence of the ethanol extract on MMP-1 caused by UVA showed that at a concentration level of $1,00{\mu}g/ml$ of the ethanol extract of J. rigida Sieb a 67.1% inhibition activity was noted. At a concentration level of $50{\mu}g/ml$ of the ethanol extract of J. rigida Sieb a 35% and 39% inhibition ratio to MMP-1 protein and mRNA were observed respectively, thereby restraining the appearance of the collagen breakdown enzyme MMP-1 and wrinkle creation by skin photo-aging.

Inhibitory Effect of Green Tea Extract on Collagenase Activity and Growth of Fish Pathogenic Bacteria (녹차 추출물을 이용한 어병세균의 collagen 분해효소 및 생육 억제)

  • Park, Sun-Mee;Park, Soo-Il;Huh, Min-Do;Hong, Yong-Ki
    • Journal of fish pathology
    • /
    • v.12 no.2
    • /
    • pp.83-88
    • /
    • 1999
  • Green tea extract has been suggested to possess properties of collagenase inhibition and antimicrobial effect to fish pathogenic bacteria. Most fish pathogenic bacteria showed collagenase activities of 0.08-0.7 unit/ml. Among them, Edwardsiella tarda produced large amount of collagenase in the ST medium at $25^{\circ}C$ after 16 hrs. Biosynthesis of the enzyme from E. tarda was decreased to 1/3 by addition of 0.08-0.8 mg/ml of tea extract in the culture medium. The collagenase activity was inhibited almost 100% in the reaction mixture by 0.2 mg/ml of the extract. Then, the minimal inhibition concentration against E. tarda growth appeared as 8 mg/ml of the tea extract in the culture medium.

  • PDF

Treatment of Postburn Facial Hyperpigmentation with Vitamin C Iontophoresis (비타민 C 이온 영동법을 이용한 안면부 화상 후 과색소 침착의 치료)

  • Choi, Jae-Il;Lee, Ji-Won;Suhk, Jeong-Hoon;Yang, Wan-Suk
    • Archives of Plastic Surgery
    • /
    • v.38 no.6
    • /
    • pp.765-774
    • /
    • 2011
  • Purpose: Many facial burn patients suffer from hyperpigmentation and its treatment has been challenging. Vitamin C (ascorbic acid) has important physiologic effects on skin, including inhibition of melanogenesis, promotion of collagen biosynthesis, prevention of free radical formation, and acceleration on wound healing. The purpose of this study is to evaluate the effectiveness of Vitamin C iontophoresis for the treatment of postburn hyperpigmentation. Methods: The authors performed a retrospective analysis of 93 patients who were admitted for the treatment of facial burn from February 2008 through February 2010. Among them, 51 patients were treated with Vitamin C iontophoresis to control postburn hyperpigmentation and 42 patients were not. Experimental group was chosen 20 of 51 patients who had been treated with Vitamin C iontophoresis and had normal facial skin on the comparable contralateral aesthetic unit. Control group was chosen 20 of 42 patients who were not treated with Vitamin C iontophoresis and had also contralateral normal aesthetic unit. The resulting color of 20 patients who were treated with Vitamin C iontophoresis was compared with the color of the contralateral normal facial skin using a digital scale color analysis. Results were analyzed with Wilcoxon signed rank test. Results: The analysis revealed significant improvement of hyperpigmentation in the experimental group compared to control group. The difference of intial value and the value in 6 months showed significant change. Mean (${\Delta}^{initial}$-${\Delta}^{6month}$) of experimental group was 11.61 and control group was 7.23. Thus, the difference between the experimental group and the control group was 4.38. Therefore, Vitamin C iontophoresis revealed significant improvement of hyperpigmentation in the experimental group compared with control group. Conclusion: Vitamin C iontophoresis is an effective treatment modality for postburn hyperpigmentation.

THE EFFECT OF TENSILE FORCE ON DNA AND PROTEIN SYNTHESIS IN BONE CELLS (인장력이 골조직 세포군의 DNA 및 단백합성에 미치는 영향)

  • Kwon, Oh-Sun;Kim, Sang-Cheol
    • The korean journal of orthodontics
    • /
    • v.24 no.4 s.47
    • /
    • pp.933-943
    • /
    • 1994
  • The present study was undertaken to determine the effect of tensile force on DNA and protein biosynthesis in bone cells, and to identify the cell type(s) which primarily respond to external physical force among the heterogenous bone cell populations. As a prerequisite for this study, two bone cell populations which retain fibroblastic and osteoblastic feature were isolated from fetal rat calvaria with sequential enzyme digestion scheme. Tensile force was delivered to each bone cell population by two acrylic resin plates connected with a orthodontic expansion screw during culture period. Rate of DNA and protein synthesis in each bone cell population were assessed by the incorporated radioactivity of $[^3H]-thymidine$ into DNA and $[^3H]-proline$ into fraction of collagenase-digestible protein and noncollagenous protein, respectively. DNA synthesis of osteoblast-like calvarial cell populations was increased significantly by the application of tensile force for 24 hours. In contrast, no alteration in DNA synthesis of fibroblast-like populations could be observed in response to applied force. Tensile force induced the change in protein synthesis of bone cell populations with the same pattern. Total protein and collagen synthesis were increased whithin 24 hours in osteoblast-like populations, but not in fibroblast-like populations by tensile force application. These findings indicate that physical force can affect cellullar activity of the particular cell population, not all cell Populations residing in bone and osteoblasts respond more sensitively than fibroblasts. So osteoblasts can modulate the behavior of other bone cells including osteoclasts by producing several local regulating factors of bone metabolism. In this context, preferential responsiveness of osteoblasts to applied tensile force observed in this study suggests that osteoblasts may play an important role in regulation of physical force-induced remodelling process.

  • PDF

The Effect of Eungapbang-gagam on Thrombus Disease Related Factors and Oxidative Stress (은갑방가감(銀甲方加減)이 혈전병태유관인자(血栓病態有關因子)와 산화적손상(酸化的損傷)에 미치는 영향(影響))

  • Lee, Soo-Jeong;Kim, Song-Baeg
    • The Journal of Korean Obstetrics and Gynecology
    • /
    • v.21 no.2
    • /
    • pp.125-151
    • /
    • 2008
  • Purpose: In this study, we investigated the anti-thrombotic efficacy of "Eungapbang-gagam(EGB)" currently used in clinical treatment of PID Methods: We studied inhibitory effect of platelet cohesion, suppressive effect of GPIIb/IIIa activity, inhibitory effect of $TXB_2$ and $PGE_2$ biosynthesis, and oxidative damage suppression effects of "EGB" in vitro. Also, suppression of pulmonary embolism and changes of related factors in dextran coagulation condition model were studied in vivo. Results: In this study, EGB extract showed dose-dependent inhibitory effect on platelet coagulation induced by ADP, epinephrine, collagen, arachidonic acid. Also it showed dose-dependent inhibition effect on GPIIb/IIIa activities compared to the control group. EGB extract significantly suppressed the decrease of speed of bloodstream caused by blood coagulation in dextran coagulation condition model and increased the number of platelets and amount of fibrinogen, and decreased the APTT in dextran coagulation condition model compared to the control group. EGB extract showed dose-dependent decrease of oxidative damages caused by DPPH and superoxide anion radicals, whereas dose-dependent increase of superoxide dismutase like activity was observed compared to the control group. Conclusion: We confirmed the anti-thrombosis and anti-oxidative efficacy of "Eungapbang-gagam". Various clinical applications of "Eungapbang-gagam" as well as use of data for the construction of EBM is anticipated.

  • PDF

Physiological activities of poly(amino acid)'s derivatives with β-sheet structure on the skin (베타시트 구조가 도입된 폴리아미노산 유도체의 피부활성에 관한 연구)

  • Shin, Sung Gyu;Han, Sa Ra;Jung, Naseul;Ji, Yoonsook;Jeong, Jae Hyun
    • Journal of the Korean Applied Science and Technology
    • /
    • v.37 no.6
    • /
    • pp.1597-1604
    • /
    • 2020
  • In this study, a synthesized poly(amino acid) self-assembly grafted with valine molecules was investigated on the skin activity of skin growth factors. The amphiphilic grafted poly(amino acid) derivatives were successfully synthesized by varying of degree of substitution(DS) and polymerization (DP) with valine molecules forming a β-sheet structure. Then, the pro-collagen biosynthesis of EGF(epidermal growth factor) was improved by 20%, and the inhibitory ability of tyrosinase activity was increased by 6.5 times by self-assembling of EGF with the poly(amino acid)s having β-sheet structures. This strategy of preparing protein self-assembly with poly(amino acid) derivatives will help improve the stability of protein growth factors and use it in medicals as well as cosmeceuticals through skin improvement.

Anti-aging and Anti-inflammatory Activities of the Extracts of Calamagrostis arundinacea (Calamagrostis arundinacea (실새풀) 추출물의 항노화 및 항염증 활성)

  • Jeong, Hea Seok;Lee, Dong Ho;Lee, Min-Sung;Heo, Tae Im;Kim, Dong Kap;Oh, Seung Hwan;Kim, Du Hyeon;Kim, Yeong-Su;Kim, Dae Wook
    • Journal of Life Science
    • /
    • v.31 no.3
    • /
    • pp.298-304
    • /
    • 2021
  • The anti-aging and anti-inflammatory activities of hot-water (Ca-HW) and 70% ethanol (Ca-E70) whole-plant Calamagrostis arundinacea extracts, as well as their bioactive potentials, were investigated using cell-free and cell-mediated experimental systems. Use of the 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical decolorization assay to evaluate the antioxidant activity of the Ca-HW and Ca-E70 extracts revealed DPPH radical scavenging activities of 27% and 48%, respectively. Neither extract caused significant cytotoxicity, and both showed cell proliferation and promotion effects using RAW 264.7, B16F10, and CCD986sk cells. B16F10 melanoma cells showed higher melanin synthesis when treated with 100 mg/ml Ca-HW or Ca-E70 than with arbutin, indicating a stronger inhibitory effect of arbutin on melanin synthesis. Ca-HW and Ca-E70 increased pro-collagen biosynthesis in the human fibroblast CCD986-SK cell line by 24.69% and 12.55%, respectively. Analysis of the anti-inflammatory effects of different concentrations of Ca-HW and Ca-E70 in RAW264.7 cells revealed that Ca-E70 appeared to inhibit the lipopolysaccharide-induced production of nitric oxide and IL-6, a proinflammatory cytokine; therefore, Ca-E70 showed an anti-inflammatory effect. These results suggested that C. arundinacea extracts could have skin anti-aging and anti-inflammatory properties.

Preparation and Properties of Phytosphingosine Ascorbate with Retaining Skin Development Effects (피부 활성을 갖는 Phytosphingosine Ascorbate의 합성)

  • Min, Seok-Kee;Jin, Yong-Hoon;Park, Woo-Jung;Eom, Sang-Yong;Kim, Jong-Heon
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.30 no.2
    • /
    • pp.167-172
    • /
    • 2004
  • In the human skin, vitamin C (L -ascorbic acid) that is well known as the activated materials has effects that is skin anti-aging and wrinkle repair by giving impetus to collagen biosynthesis and anti-oxidation, and that is the sun screen, a wound recovering, inhibition melanogenesis and so on. In spite of its effects, vitamin C has the defects of the skin stimulation and easily oxidized instability by water, air, heat and light. For solving their matters, many investigation is advanced and its results are synthesized the various vitamin C derivatives. And yet they have not solved the unstable property of vitamin C and were still insufficient for the comparing with the effect of the pure vitamin C itself. In this study, in order to prepare vitamin C derivative of being improved the stability and to apply vitamin C effect in the skin, we prepared new vitamin C derivative, phytosphingosine ascorbate, by using phytosphingosine, one of sphingolipids, which have a distinguished skin affinity. Phytosphingosine ascorbate can be prepared as the ionic bond between amine group (-NH$_2$) of phytosphingosine and hydroxy group (-OH) of vitamin C by way of the relatively simple reaction. So the structure and properties of the synthesized phytosphingosine ascorbate was confirmed the use of elemental analysis (C 58.3 : H 9.3 : N 2.8 : O 29.5), MALDI TOF-MS (Mw=492.58), Ultraviolet spectra (268.5nm), lH NMR, FT-IR spectra, thermal analysis (m.p=l54$^{\circ}C$), HPLC and so on. And we could confirm the anti-bacterial and anti-oxidation effects. Based on these results, we could confirm to prepare a new material that was expected of both effects of vitamin C and phytosphingosine and that is improved properties of vitamin C.