• Title/Summary/Keyword: coating binder

Search Result 219, Processing Time 0.026 seconds

Preparation and Performance Evaluation of Zinc Phosphate-Coated Mica Anticorrrosive Pigment (운모상에 인산아연이 도포된 방청안료의 제조 및 성능평가)

  • Lee, Yu Jin;Park, Seong Soo;Hong, Seong Soo;Lee, Seung Ho;Kim, Dae Sung;Lee, Gun Dae
    • Clean Technology
    • /
    • v.19 no.3
    • /
    • pp.257-263
    • /
    • 2013
  • The zinc phosphate-coated mica (ZP/mica) pigments were prepared using phosphoric acid, zinc nitrate and mica as starting materials, and used as anticorrosive pigments. The scanning electron microscopy (SEM) and x-ray diffraction (XRD) techniques were used to observe the morphology and crystal structure of prepared pigments. The prepared pigments were incorporated into an epoxy binder to prepare coating and the corrosion inhibition performance of the pigments was evaluated using electrochemical impedance spectroscopy (EIS). It was found that the anticorrosive performance of the ZP/mica pigment prepared at $70^{\circ}C$ was the better than that prepared at $20^{\circ}C$. The formation of ZnO, in addition to $Zn_3(PO_4)_2{\cdot}2H_2O$, was observed on ZP/mica pigment prepared at $70^{\circ}C$. The excellent anticorrosive performance of ZP/mica pigment could be ascribed to the synergistic effect with electrochemical anticorrosive mechanism from zinc compounds on mica and barrier anticorrosive mechanism from lamellar mica.

Effect of Priming and Seed Pellet Technique for Improved Germination and Growth in Fraxinus rhynchophylla and Alnus sibirica (프라이밍 및 종자펠렛 제조를 통한 물푸레나무와 물오리나무의 발아율 향상 및 생장증대 효과)

  • Park, Hae Il;Shim, Hoon Seob;Choi, Li Na;Jo, Hyeon Gil;Han, Seung Ho;Lee, Jae Geun;Yu, Chang Yeon;Lim, Jung Dae
    • Korean Journal of Medicinal Crop Science
    • /
    • v.21 no.1
    • /
    • pp.7-19
    • /
    • 2013
  • This study was carried out to select new pelleting binder and material for seeds from Fraxinus rhynchophylla Hance and Alnus sibirica Fisch. ex Turcz. The optimum treatments of the various concentrations and species of priming agents to improve seed germination of both woody medicinal plants were also estimated. Germinability was increased when the seeds of Fraxinus rhynchophylla Hance was soaked in -1.0 MPa of PEG6000 solution at $15^{\circ}C$ for 4 days significantly, the optimum treatment for improving germination of Alnus sibirica Fisch. ex Turcz was observed when the tested seeds was soaked in 100 mM of KCl at $15^{\circ}C$ for 4 days. The influence of physical and chemical properties of pelleting solid materials, the mixture of gypsum, diatomaceous earth, dalma ceramic and vermicuolite (6:1:1:1 ratio) were found as the best pelleting materials for Fraxinus rhynchophylla Hance and Alnus sibirica Fisch. ex Turcz. seeds. To satisfy the requirements of absorption and compatibility for multi-layer seed pelleting, SGPA (Starch-grafted cross-linked polyacrylates) hydrogel was prepared using starch, acrylonitrile, ceric ammonium nitrate, nitric acid, methyl alcohol and potassium hydroxide. The resulting SGPA hydrogel showed high water absorption but not plant compatibility. It suggested that seed pelleting using pelleting materials and SGPA hydrogel (multi-layer coating) after priming agent treatment is to increase germinability and seedling growth and it can reduced irrigation labours and can also save seed.

Effect of Vapor-Cooled Heat Stations in a Cryogenic Vessel (극저온액체 저장용기에서 열전도 차폐단의 영향)

  • Kim, S.Y.;Kang, B.H.;Choi, H.J.
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.9 no.4
    • /
    • pp.169-176
    • /
    • 1998
  • An experimental study on effect of vapor-cooled heat stations in a 5.5 liter cryogenic vessel has been performed. The cryogenic vessel is made of stainless steel of thickness of 1mm and insulated by the combined insulation of vacuum, MLI(multi-layer insulation) and vapor-cooled radiation shield. Vapor-cooled heat stations are also constructed based on the 1-dimensional thermal analysis to reduce the heat inleak through a filling tube. Thermal analysis indicates that the vapor-cooled heat stations can substantially enhance the performance of vessel for cryogenic fluids with high $C_p/h_{fg}$ where $C_p$ the specific heat and $h_{fg}$ the heat of vaporization, such as $LH_2$ and LHe. The experimental results for $LN_2$ shows that the total heat inleak into inner vessel consists of 14% radiation and 86% conduction through the filling tube. Therefore, it is expected that the conduction heat in leak of the vessel for high $C_p/h_{fg}$ cryogenic fluids can be significantly reduced. powders. The amount of copper coating was 20wt%. In order to examine corrosion behavior of the electrodes, the corrosion current and the current density, in 6M KOH aqueous solution after removal of oxygen in the solution, were measured by potentiodynamic and cyclic voltamo methods. The results showed that Co in the alloy increased corrosion resistance of the electrode whereas Ni decreased the stability of the electrode during the charge-discharge cycles. The electrode used Si sealant as a binder showed a lower corrosion current density than the electrode used PTFE and the electrode used Cu-coated alloy powders showed the best corrosion resistance.

  • PDF

Effects of Alloying Elements and Binding Materials on the Corrosion Behavior of Metal Hydride Electrodes (금속수소화물전극의 부식특성에 미치는 합금원소와 결합제의 영향)

  • Lee, Yang-Boum;Choe, Han-Cheol;Park, Ji-Yoon;Kim, Kwan-Hyu
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.9 no.4
    • /
    • pp.161-167
    • /
    • 1998
  • It has been investigated the effects of alloying elements and binders on the corrosion behavior of metal hydride electrodes for anode of Ni/MH secondary battery. The $AB_5$-type alloys, $(LM)Ni_{4.49}Co_{0.1}Mn_{0.205}Al_{0.205}$ and $(LM)Ni_{3.6}Co_{0.7}Mn_{0.3}Al_{0.4}$, were used for the experiments. The electrodes were prepared by mixing and cold-pressing of alloy powders with Si sealent or PTFE powders, or cold-pressing the electroless copper coated alloy powders. The amount of copper coating was 20wt%. In order to examine corrosion behavior of the electrodes, the corrosion current and the current density, in 6M KOH aqueous solution after removal of oxygen in the solution, were measured by potentiodynamic and cyclic voltamo methods. The results showed that Co in the alloy increased corrosion resistance of the electrode whereas Ni decreased the stability of the electrode during the charge-discharge cycles. The electrode used Si sealant as a binder showed a lower corrosion current density than the electrode used PTFE and the electrode used Cu-coated alloy powders showed the best corrosion resistance.

  • PDF

Preparation and Properties of Autoxidation Drying Type Waterborne Coatings Containing Bentonite (벤토나이트가 포함된 자동산화 건조형 수성코팅제의 제조 및 특성)

  • 이석기;구광모;이병교
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.11
    • /
    • pp.1067-1074
    • /
    • 2001
  • Four different composition of autoxidation drying type waterborne coatings (WBC-1, WBC-2, WBC-3, WBC-4) were prepared by the compounding of bentonite (BEN) as a water swellable clay and organometallic soaps as a drier with acrylic binder and coating additives. The solution viscosity, solid content, rheological properties and drying rate of WBCs were investigated. Also the thermal stability, the transmittance and the water-resistance of the films casted by WBCs were measured, and the surface topology of WBC films were investigated by the scanning probe microscopy. As WBC-2, WBC-3 and WBC-4 containing BEN showed the thixotropy with the shear rate, the storage stability of WBC was a excellent. When the driers was mixed in the ratio of Mn/Zn/Ba=1/2/3, the dry ability of WBCs showed maximum as 5.0 sec at 60$\^{C}$. The initial decomposition temperature and the transmittance of WBC films containing BEN increased in range of 32.2∼54.7$\^{C}$ and 5.1∼8.6% than the commercial WBC (MC-21W), respectively. The water resistance of WBC films increased in order of MC-21W

  • PDF

A optimization study on the preparation and coating conditions on honeycomb type of Pd/TiO2 catalysts to secure hydrogen utilization process safety (수소 활용공정 안전성 확보를 위한 Pd/TiO2 수소 상온산화 촉매의 제조 및 허니컴 구조의 코팅 조건 최적화 연구)

  • Jang, Young hee;Lee, Sang Moon;Kim, Sung Su
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.29 no.4
    • /
    • pp.47-54
    • /
    • 2021
  • In this study, the performance of a honeycomb-type hydrogen oxidation catalyst to remove hydrogen in a hydrogen economy society to secure leaking hydrogen. The Pd/TiO2 catalyst was prepared based on a liquid phase reduction method that is not exposed to a heat source, and it was showed through H2-chemisorption analysis that it existed as very small active particles of 2~4 nm. In addition, it was found that the metal dispersion decreased and the active particle size increased as the reduction reaction temperature increased. It was meant that the active metal particle size and the hydrogen oxidation performance were in a proportional correlation, so that it was consistent with the hydrogen oxidation performance reduction result. The prepared catalyst was coated on a support in the form of a honeycomb so that it could be applied to the hydrogen industrial process. When 20 wt% or more of the AS-40 binder was coated, oxidation performance of 90% or more was observed under low-concentration hydrogen conditions. It was showed through SEM analysis that long-term catalytic activity can be expected by enhancing the adhesion strength of the catalyst and preventing catalyst desorption. It is a basic research that can secure safety in a hydrogen society such as gasification, organic resource, and it can be utilized as a system that can respond to unexpected safety accidents in the future.

A Study on the Optimization of α-Al2O3 Powder Manufacturing for the Application of Separators for Lithium-Ion Secondary Batteries (리튬이차전지용 분리막 적용을 위한 α-알루미나 분말 제조 최적화 연구)

  • Dong-Myeong Moon;Da-Eun Hyun;Ji-Hui Oh;Jwa-Bin Jeon;Yong-Nam Kim;Kyoung-Hoon Jeong;Jong-Kun Lee;Sang-Mo Koo;Dong-Won Lee;Jong-Min Oh
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.6
    • /
    • pp.638-646
    • /
    • 2023
  • Recently, active research has been conducted to enhance the power characteristics and thermal stability of lithium-ion batteries (LiBs) by modifying separators using a ceramic coating method. However, since the thermal properties and surface features of the separator vary depending on the characteristics of the ceramic powders applied to the separator, it is crucial to manufacture ceramic powders optimized for the separator's performance. In this study, we evaluated the characteristics of three types of α-alumina (A-1, A-2, and A-3) produced with varying dispersant contents and milling times, in addition to commercial α-alumina (AES-11). Subsequently, the optimized powders (A-3) were coated onto the separator using an aqueous binder for comparison with the characteristics of an AES-11 coated separator and an uncoated PE separator. The A-3 coated separator improved electrolyte wettability with a low contact angle (44.69°) and increased puncture strength (538 gf). Furthermore, it exhibited excellent thermal stability, with a shrinkage value of 5.64% when exposed to 140℃ for 1 hour, compared to the AES11 coated separator (6.09%) and the bare PE separator (69.64%).

Stellite bearings for liquid Zn-/Al-Systems with advanced chemical and physical properties by Mechanical Alloying and Standard-PM-Route

  • Zoz, H.;Benz, H.U.;Huettebraeucker, K.;Furken, L.;Ren, H.;Reichardt, R.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2000.04a
    • /
    • pp.9-10
    • /
    • 2000
  • An important business-field of world-wide steel-industry is the coating of thin metal-sheets with zinc, zinc-aluminum and aluminum based materials. These products mostly go into automotive industry. in particular for the car-body. into building and construction industry as well as household appliances. Due to mass-production, the processing is done in large continuously operating plants where the mostly cold-rolled metal-strip as the substrate is handled in coils up to 40 tons unwind before and rolled up again after passing the processing plant which includes cleaning, annealing, hot-dip galvanizing / aluminizing and chemical treatment. In the liquid Zn, Zn-AI, AI-Zn and AI-Si bathes a combined action of corrosion and wear under high temperature and high stress onto the transfer components (rolls) accounts for major economic losses. Most critical here are the bearing systems of these rolls operating in the liquid system. Rolls in liquid system can not be avoided as they are needed to transfer the steel-strip into and out of the crucible. Since several years, ceramic roller bearings are tested here [1.2], however, in particular due to uncontrollable Slag-impurities within the hot bath [3], slide bearings are still expected to be of a higher potential [4]. The today's state of the art is the application of slide bearings based on Stellite\ulcorneragainst Stellite which is in general a 50-60 wt% Co-matrix with incorporated Cr- and W-carbides and other composites. Indeed Stellite is used as the bearing-material as of it's chemical properties (does not go into solution), the physical properties in particular with poor lubricating properties are not satisfying at all. To increase the Sliding behavior in the bearing system, about 0.15-0.2 wt% of lead has been added into the hot-bath in the past. Due to environmental regulations. this had to be reduced dramatically_ This together with the heavily increasing production rates expressed by increased velocity of the substrate-steel-band up to 200 m/min and increased tractate power up to 10 tons in modern plants. leads to life times of the bearings of a few up to several days only. To improve this situation. the Mechanical Alloying (MA) TeChnique [5.6.7.8] is used to prOduce advanced Stellite-based bearing materials. A lubricating phase is introduced into Stellite-powder-material by MA, the composite-powder-particles are coated by High Energy Milling (HEM) in order to produce bearing-bushes of approximately 12 kg by Sintering, Liquid Phase Sintering (LPS) and Hot Isostatic Pressing (HIP). The chemical and physical behavior of samples as well as the bearing systems in the hot galvanizing / aluminizing plant are discussed. DependenCies like lubricant material and composite, LPS-binder and composite, particle shape and PM-route with respect to achievable density. (temperature--) shock-reSistibility and corrosive-wear behavior will be described. The materials are characterized by particle size analysis (laser diffraction), scanning electron microscopy and X-ray diffraction. corrosive-wear behavior is determined using a special cylinder-in-bush apparatus (CIBA) as well as field-test in real production condition. Part I of this work describes the initial testing phase where different sample materials are produced, characterized, consolidated and tested in the CIBA under a common AI-Zn-system. The results are discussed and the material-system for the large components to be produced for the field test in real production condition is decided. Outlook: Part II of this work will describe the field test in a hot-dip-galvanizing/aluminizing plant of the mechanically alloyed bearing bushes under aluminum-rich liquid metal. Alter testing, the bushes will be characterized and obtained results with respect to wear. expected lifetime, surface roughness and infiltration will be discussed. Part III of this project will describe a second initial testing phase where the won results of part 1+11 will be transferred to the AI-Si system. Part IV of this project will describe the field test in a hot-dip-aluminizing plant of the mechanically alloyed bearing bushes under aluminum liquid metal. After testing. the bushes will be characterized and obtained results with respect to wear. expected lifetime, surface roughness and infiltration will be discussed.

  • PDF

Bakanae Disease Reduction Effect by Use of Silicate Coated Seed in Wet Direct-Seeded Rice (규산코팅 벼 종자를 이용한 담수직파재배 시 벼 키다리병 경감효과)

  • Kang, Yang-Soon;Kim, Wan Joong;Kim, Yeon Ju;Jung, Ki-Hong;Choi, Ul-Su
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.61 no.1
    • /
    • pp.9-16
    • /
    • 2016
  • To investigate the effect of soluble silicate zeolite dressing of the rice against bakanae disease, field trial in reclaimed land and in vitro were carried out. The coated rice seeds (SCS) which were dressed with the mixture of 25% silicic acids (binder), and the zeolite (coating powder). In wet direct seeding, uniform scattering of rice seeds on the soil surface and the better seedling establishment were shown in SCS treatment plots. The incidence of bakanae disease began from the mid tillering stage toward the heading stage. Around heading stage, the ratio of infected tillers reached its highest point by 9.9% in non-SCS treatment plots. While, in SCS treatment plots, the ratio of infected tillers was no more than 0.01%. The vitality of the pathogenic fungi of bakanae disease in the SCS and non-SCS samples were assessed. Samples were incubated for one week keeping proper humidity at $30^{\circ}C$ after inoculated with panicles of infected rice plants from experimental field plots. In non-SCS treatment, pinkish colonies were formed on the grain surface of panicle of infected plants, and mycelium, macro-conidia and micro-conidia were developed actively inside part of infected grain inoculated. While in SCS treatment, micro-conidia and mycelium were not survived and the growth of macro-conidia, mycelia were greatly inhibited and withered. Based on the results, it is concluded that the environmental friendly control of bakanae disease by use of SCS is possible and soluble silicate can be applied as agents for replacement of seed disinfection.