DOI QR코드

DOI QR Code

Preparation and Performance Evaluation of Zinc Phosphate-Coated Mica Anticorrrosive Pigment

운모상에 인산아연이 도포된 방청안료의 제조 및 성능평가

  • Lee, Yu Jin (Department of Chemical Engineering, Pukyong National University) ;
  • Park, Seong Soo (Department of Chemical Engineering, Pukyong National University) ;
  • Hong, Seong Soo (Department of Industrial Chemistry, Pukyong National University) ;
  • Lee, Seung Ho (Eco Composite Materials Center, Korea Institute of Ceramic Engineering & Technology) ;
  • Kim, Dae Sung (Eco Composite Materials Center, Korea Institute of Ceramic Engineering & Technology) ;
  • Lee, Gun Dae (Department of Chemical Engineering, Pukyong National University)
  • 이유진 (부경대학교 화학공학과) ;
  • 박성수 (부경대학교 화학공학과) ;
  • 홍성수 (부경대학교 공업화학과) ;
  • 이승호 (한국세라믹기술원 에코복합소재센터) ;
  • 김대성 (한국세라믹기술원 에코복합소재센터) ;
  • 이근대 (부경대학교 화학공학과)
  • Received : 2013.08.03
  • Accepted : 2013.09.10
  • Published : 2013.09.30

Abstract

The zinc phosphate-coated mica (ZP/mica) pigments were prepared using phosphoric acid, zinc nitrate and mica as starting materials, and used as anticorrosive pigments. The scanning electron microscopy (SEM) and x-ray diffraction (XRD) techniques were used to observe the morphology and crystal structure of prepared pigments. The prepared pigments were incorporated into an epoxy binder to prepare coating and the corrosion inhibition performance of the pigments was evaluated using electrochemical impedance spectroscopy (EIS). It was found that the anticorrosive performance of the ZP/mica pigment prepared at $70^{\circ}C$ was the better than that prepared at $20^{\circ}C$. The formation of ZnO, in addition to $Zn_3(PO_4)_2{\cdot}2H_2O$, was observed on ZP/mica pigment prepared at $70^{\circ}C$. The excellent anticorrosive performance of ZP/mica pigment could be ascribed to the synergistic effect with electrochemical anticorrosive mechanism from zinc compounds on mica and barrier anticorrosive mechanism from lamellar mica.

인산아연이 도포된 운모 안료(ZP/mica)를 인산, 질산아연 그리고 운모를 출발물질로 하여 제조한 후, 방청안료로 사용하였다. 주사전자현미경 및 X-선 회절분석기 등을 이용하여 제조된 안료의 형상과 결정구조를 관찰하였다. 제조된 안료와 에폭시수지를 배합하여 도막을 형성시킨 다음 전기화학적 임피던스법을 이용하여 안료의 방청성을 평가하였다. $70^{\circ}C$에서 합성된 ZP/mica 안료의 방청성이 $20^{\circ}C$에서 제조된 안료보다는 우수하다는 것을 알 수 있었다. $70^{\circ}C$에서 합성된 ZP/mica 안료표면에는 $Zn_3(PO_4)_2{\cdot}2H_2O$ 이외에도 ZnO가 동시에 생성되어 있음을 볼 수 있었다. 합성된 ZP/mica 안료의 우수한 방청성은 운모표면의 아연화합물에 의한 전기화학적 방청기구와 판상구조의 운모에 의한 장벽 방청기구의 상승작용에 기인한 것으로 생각된다.

Keywords

References

  1. Lima-Netoa, P., Araujob, A. P., Araujob, W. S., and Correiaa, A. N., "Study of the Anticorrosive Behaviour of Epoxy Binders Containing Non-Toxic Inorganic Corrosion Inhibitor Pigments," Prog. Org. Coat., 62, 344-350 (2008). https://doi.org/10.1016/j.porgcoat.2008.01.012
  2. Zubielewicz, M., and Gnot, W., "Mechanism of Non-Toxic Anticorrosive Pigments in Organic Waterborne Coatings," Prog. Org. Coat., 49, 358-371 (2004). https://doi.org/10.1016/j.porgcoat.2003.11.001
  3. Kalendova, A., Kalenda, P., and Vesely, D., "Comparison of The Efficiency of Inorganic Nonmetal Pigments with Zinc Powder in Anticorrosion Paints," Prog. Org. Coat., 57, 1-10 (2006). https://doi.org/10.1016/j.porgcoat.2006.05.015
  4. R. Naderi, R., and Attar, M. M., "Electrochemical Assessing Corrosion Inhibiting Effects of Zinc Aluminum Polyphosphate (ZAPP) as A Modified Zinc Phosphate Pigment," Electrochimica Acta, 53, 5692-5696 (2008). https://doi.org/10.1016/j.electacta.2008.03.029
  5. Beiro, M., Collazo, A., Izquierdo, M., Novoa, X. R., and Perez, C., "Characterization of Barrier Properties of Organic Paints: The Zinc Phosphate Effectiveness," Prog. Org. Coat., 46, 97-106 (2003). https://doi.org/10.1016/S0300-9440(02)00216-3
  6. Austin, M. J., "Inorganic Anticorrosive Pigments," in J.V. Koleske (Ed.), The Gardner Sward Handbook: Paint and Coating Testing Manual, vol. 17, 14th ed., ASTM Manual, MNL, 1995, pp. 238-251.
  7. Hare, C. H., amd Kurnas, J. S., "Reduced PVC and The Design of Metal Primers," J. Coat. Technol., 72, 21-27 (2000). https://doi.org/10.1007/BF02729973
  8. Mahdavian, M., and Attar, M. M., "Investigation of Zinc Phosphate Effectiveness at Different Pigment Volume Concentration via Electrochemical Impedance Spectroscopy," Electrochimica Acta, 50, 4645-4648 (2005). https://doi.org/10.1016/j.electacta.2005.02.015
  9. Deya, M. C., Blustein, G., Romagnoli, R., and del Amo, B., "The Influence of The Anion Type on The Anticorrosive Behavior of Inorganic Phosphates," Surf. Coat. Technol., 150, 133-142 (2002). https://doi.org/10.1016/S0257-8972(01)01522-5
  10. Singh, L., Kaur, N., and Singh, M., "Thermoluminescence Characteristics of High Gamma Dose Irradiated Muscovite Mica," Indian J. Pure Appl. Phys., 50, 14-18 (2012).
  11. Pawliga, O, and Trettina, R., "Synthesis and Characterization of ${\alpha}$-Hopeite, $Zn_3(PO_4)_2{\cdot}4H_2O$," Mater. Res. Bull., 34, 1959-1966 (1999). https://doi.org/10.1016/S0025-5408(99)00206-8
  12. Stoch, A., Paluszkiewicz, C., and Dlugon, E., "An Effect of Methylaminoethoxysilane on Zinc Phosphate Rehydration," J. Mol. Structure, 511, 295-299 (1999).
  13. Fedrizzi, L., Tomasi, A., Pedrotti, S., Bonora, P. L., and Balboni, P., "Modification of The Phosphate Coatings Microcrystalline Structure Induced by Dehydration and Rehydration Processes," J. Mater. Sci., 24, 3928-3933 (1989). https://doi.org/10.1007/BF01168956
  14. Liu, Z., Li, J., Ya, J., Xin, Y., and Jin, Z., "Mechanism and Characteristics of Porous ZnO Films by Sol-Gel Method with PEG Template," Mater. Lett., 62, 1190-1193 (2008). https://doi.org/10.1016/j.matlet.2007.08.010
  15. Prasad, V., Shaikh, A. J., Kathe, A. A., Bisoyi, D. K., Verma, A. K., and Vigneshwaran, N., "Functional Behaviour of Paper Coated with Zinc Oxide-Soluble Starch Nanocomposites," J. Mater. Process. Technol., 210, 1962-1967 (2010). https://doi.org/10.1016/j.jmatprotec.2010.07.009
  16. Park, J. H., Lee, G. D., Nishikata, A., and Tsuru, T., "Anticorrosive Behavior of Hydroxyapatite as An Environmentally Friendly Pigment," Corros. Sci., 44, 1087-1095 (2002). https://doi.org/10.1016/S0010-938X(01)00118-4
  17. Xu, A., Zhang, F., Luo, B., Jin, F., and Zhang, T., "Investigation The Deterioration Process of Organic Coating Using Changing Rate of Phase Angle at High Frequency United to Neutral Network," Int. J. Electrochem. Sci., 8, 773-779 (2013).
  18. Choi, H., Kim, K. Y., and Park, J. M., "Encapsulation of Aliphatic Amines into Nanoparticles for Self-Healing Corrosion Protection of Steel Sheets," Prog. Org. Coat., 76, 1316-1324 (2013). https://doi.org/10.1016/j.porgcoat.2013.04.005
  19. Keresse, P., Szadkowski, V., and Odenthal, R. H., Influence of Pigmetns on The Effectiveness of Anticorrosive Primes, in Leidheiser, Jr., H.(Ed.), Corrosion control by organic coatings, NACE, Houston, 1981, pp. 197-202.
  20. Jagtap, R. N., Patil, P. P., and Hassan, S. Z., "Effect of Zinc Oxide in Combating Corrosion in Zinc-Rich Primer," Prog. Org. Coat., 63, 389-394 (2008). https://doi.org/10.1016/j.porgcoat.2008.06.012
  21. Shi, X., Nguyen, T. A., Suo, Z., Liu, Y., and Avci, R., "Effect of Nanoparticles on The Anticorrosion and Mechanical Properties of Epoxy Coating," Surf. Coat. Technol., 204, 237-245 (2009). https://doi.org/10.1016/j.surfcoat.2009.06.048

Cited by

  1. Study of the corrosion effect of CO2stream with SO2and NO2on a phosphate coated steel tube vol.15, pp.12, 2014, https://doi.org/10.5762/KAIS.2014.15.12.6973