DOI QR코드

DOI QR Code

A optimization study on the preparation and coating conditions on honeycomb type of Pd/TiO2 catalysts to secure hydrogen utilization process safety

수소 활용공정 안전성 확보를 위한 Pd/TiO2 수소 상온산화 촉매의 제조 및 허니컴 구조의 코팅 조건 최적화 연구

  • Jang, Young hee (Department of Environmental Energy Engineering, Kyonggi University) ;
  • Lee, Sang Moon (Department of Environmental Energy Engineering, Kyonggi University) ;
  • Kim, Sung Su (Department of Environmental Energy Engineering, Kyonggi University)
  • 장영희 (경기대학교 환경에너지공학과) ;
  • 이상문 (경기대학교 환경에너지공학과) ;
  • 김성수 (경기대학교 환경에너지공학과)
  • Received : 2021.11.23
  • Accepted : 2021.12.10
  • Published : 2021.12.30

Abstract

In this study, the performance of a honeycomb-type hydrogen oxidation catalyst to remove hydrogen in a hydrogen economy society to secure leaking hydrogen. The Pd/TiO2 catalyst was prepared based on a liquid phase reduction method that is not exposed to a heat source, and it was showed through H2-chemisorption analysis that it existed as very small active particles of 2~4 nm. In addition, it was found that the metal dispersion decreased and the active particle size increased as the reduction reaction temperature increased. It was meant that the active metal particle size and the hydrogen oxidation performance were in a proportional correlation, so that it was consistent with the hydrogen oxidation performance reduction result. The prepared catalyst was coated on a support in the form of a honeycomb so that it could be applied to the hydrogen industrial process. When 20 wt% or more of the AS-40 binder was coated, oxidation performance of 90% or more was observed under low-concentration hydrogen conditions. It was showed through SEM analysis that long-term catalytic activity can be expected by enhancing the adhesion strength of the catalyst and preventing catalyst desorption. It is a basic research that can secure safety in a hydrogen society such as gasification, organic resource, and it can be utilized as a system that can respond to unexpected safety accidents in the future.

본 연구는 수소 경제 사회에서 누출·농축 수소에 대한 안전성 확보를 위해 Pd/TiO2 촉매를 허니컴 형태로 코팅하여 그 성능을 평가하였다. 열원에 노출되지 않는 액상환원법을 기반으로 촉매를 제조하였으며, 2~4 nm의 매우 작은 활성입자로 존재함을 H2-chemisorption 분석을 통해 확인하였다. 또한 환원반응온도가 증가할수록 metal dispersion 감소 및 활성입자 크기가 증가함을 확인하였으며, 활성금속 입자 크기와 수소 산화 성능은 비례관계에 있음에 따라 수소 산화 성능 감소결과와 일치함을 확인하였다. 제조된 촉매를 실 공정에 적용할 수 있도록 허니컴 형태의 지지체에 코팅하였을 때, AS-40 바인더를 20 wt%이상 코팅하였을 때 저농도 수소 조건에서 90% 이상의 산화 성능을 관찰하였다. 이는 촉매의 부착강도를 증진시키고 촉매 탈리를 방지하여 장기적인 촉매 활성을 기대할 수 있음을 SEM 분석을 통해 확인하였다. 본 연구를 통해 가스화 등과 같은 유기물 자원화를 통해 수소 생산 및 수소 인프라 구축 사회에서 안전성을 확보할 수 있는 기초연구로, 추후 예측하지 못한 안전사고를 대응할 수 있는 시스템으로써 활용될 수 있을 것으로 판단된다.

Keywords

Acknowledgement

본 연구는 국토교통부/국토교통과학기술진흥원의 지원으로 수행되었음(과제번호 21CTAP-C157653-02)

References

  1. Biswas, P. and Wu, C. Y., "Control of toxic metal emissions from combustors using sorbents: A review", J. Air Waste Manege. Assoc., 48, pp. 113~127. (1998). https://doi.org/10.1080/10473289.1998.10463657
  2. Kang, Y. S., Kim, S. S., Lee, H. D., Kim, J. K. and Hong, S. C. "A study on SOx emission characteristics in coal combustion", Appl. Chem. Eng., 22, pp. 219~223. (2011).
  3. Stangarone, T., "South Korean efforts to transition to a hydrogen economy", Clean technologies and environmental policy, 23, pp. 509~516. (2021). https://doi.org/10.1007/s10098-020-01936-6
  4. Jo, Y.-D., Tak, S., Choi, K. -S., Lee, J. R. and Park, K. -S., "Analysis of hydrogen accident in Korea", Trans. of the Korean hydrogen and new energy society, 15, pp. 82~87. (2004).
  5. Deng, J. and Cao, X. W., "A study in evaluating a passive autocatatlytic recombiner PAR-system in the PWR large-dry containment", Nucl. Eng. Des., 238, pp. 2554~2560. (2008). https://doi.org/10.1016/j.nucengdes.2008.04.011
  6. Bachellerie, E., Arnould, F., Auglaire, M., Boeck, B., Braillard, O., Eckardt, B., Ferroni, F. and Moffett, R., "Generic approach for detsigning and implementing a passive autocatalytic recombiner PAR-system in nuclear power plant containments", Nucl. Eng. Des., 238, pp. 2554~2560. (2008). https://doi.org/10.1016/j.nucengdes.2008.04.011
  7. Royl, P., Rochholz, H., Breitung, W., Travis, J. R. and Necker, G., "Analysis of steam and hydrogen distributions with PAR mitigation in NPP containments", Nucl. Eng. Des., 202, pp. 231~248. (2000). https://doi.org/10.1016/S0029-5493(00)00332-0
  8. Rinnemo, M., Deutschmann, O., Behrendt, F. and Kasemo, B., "Experimental and numerical investigation of the catalytic ignition of mixtures of hydrogen and oxygen on platinum", Combust. Flame, 111, pp. 312~326. (1997). https://doi.org/10.1016/S0010-2180(97)00002-3
  9. Reinecke, E. A., Tragsdorf, I. M. and Gierling, K. "Studies on innovative hydrogen recombiners as safety devices in the containments of light water reactors", Nucl. Eng. Des., 230, pp. 49~59. (2004). https://doi.org/10.1016/j.nucengdes.2003.10.009
  10. Kim, S. S. and Hong, S. C., "Improving the activity of Mn/TiO2 catalysts through control of the pH and valence state of Mn during their preparation", J. Air Waste Manage. Assoc., 62, pp. 362~369. (2012). https://doi.org/10.1080/10473289.2011.653515
  11. Kim, S. S., Park, K. H. and Hong, S. C., "A study on HCHO oxidation characteristics at room temperature using a Pt/TiO2 catalyst", Appl. Catal. A., 398, pp. 96-103. (2011). https://doi.org/10.1016/j.apcata.2011.03.018
  12. Won, J. M. and Hong, S. C. "Effect of Pt/Al2O3-based Catalysts on Removal Efficiency of Hydrogen", Appl. Chem. Eng., 28, pp. 221~229. (2017). https://doi.org/10.14478/ACE.2017.1004
  13. Liu, L., Qiao, B., He, Y., Zhou, F., Yang, B. and Deng, Y., "Catalytic co-oxidation of CO and H2 over FeOx-supported Pd catalyst at low temperature", J. Catal., 294, pp. 29~36. (2012). https://doi.org/10.1016/j.jcat.2012.06.018
  14. Lee, D. Y., Kim, S. C., Lee, S. M. and Kim, S. S. "Development of Pd/TiO2 catalysts with La2O3 addition and a study on the performance improvement of H2 oxidation at room temperature", Appl. Chem. Eng., 31, pp. 674~678. (2020). https://doi.org/10.14478/ACE.2020.1087
  15. Carty, W. M. and Lednor, P. W., "Monolithic ceramics and heterogeneous catalysts: honeycombs and foams", Current Opinion in Solid State and Materials Science, 1, pp. 88~95. (1996). https://doi.org/10.1016/S1359-0286(96)80015-5
  16. Jeong, H., Kim, T., Im, E. and Lim, D.-H. "Optimum Synthesis Conditions of Coating Slurry for Metallic Structured De-NOx Catalyst by Coating process on Ship Exhaust Gas", Clean Technol., 24, pp. 127~134. (2018). https://doi.org/10.7464/KSCT.2018.24.2.127