• Title/Summary/Keyword: co-precipitate

Search Result 117, Processing Time 0.035 seconds

Control of Glass Infiltration at the Al2O3/Glass/Al2O3 Interface

  • Jo, Tae-Jin;Yeo, Dong-Hun;Shin, Hyo-Soon;Hong, Youn-Woo;Cho, Yong-Soo
    • Transactions on Electrical and Electronic Materials
    • /
    • v.12 no.1
    • /
    • pp.32-34
    • /
    • 2011
  • A zero-shrinkage sintering process in which the shrinkage of the x-y axis is controlled to be zero is in great demand due to the high integration trend in ceramic modules. Among the zero-shrinkage sintering processes available, the glass infiltration method proposed in the preliminary study with an $Al_2O_3/Glass/Al_2O_3$ structure is one promising method. However, problems exist in regard to the glass infiltration method, including partially incomplete joining between $Al_2O_3$ and glass layers due to the precipitate of Ti-Pb rich phase during the sintering process. Therefore, we wish to solve the de-lamination problems and suggest a mechanism for delamination and the solutions in the zero-shrinkage low temperature co-fired ceramic (LTCC) layers. The de-lamination problems diminished using the Pb-BSi-O glass without $TiO_2$ in Pb-B-Ti-Si-O glass and produced a very dense zero-shrinkage LTCC.

Preparation of Monodispersed Colloidal Particles of Yttrium Compound by Homogeneous Precipitation. I.Effect of $Y(NO_3)_3$ Concentration (균일침전법에 의한 균일입도 초미분 이트륨화합물의 제조에 관한 연구 I. $Y(NO_3)_3$ 농도의 영향)

  • 권영식;김연식
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.5
    • /
    • pp.495-506
    • /
    • 1996
  • Monodispersed colloidaly yttria(Y2O3) can be used in a variety of applications such as phosphors. IR transparent materials and fine ceramics. For preparing monodispersed yttria homogeneous precipitation has been regarded as a fovorable method that is monodispersed yttria can be obtained through calcining monodispersed colloidal compound of yttrium (eg:Y(OH)CO3.nH2O)which can be prepared by homogeneous precipitation with urea. It is however still required to find out the quantitative effects of important variables of precipitation such as concentration of yttrium and urea reaction temperature and initial pH of reactant even though homogeneous precipitation of Y3+ with urea has been studied extensively. Among the effects of these variables we investiga-ted 1) the effect of yttrium concentration on the shape and size of precipitate and the reation rate 2) range of yttrium concentration required to make monodispersed colloidal particles 3) the reason for limited concentra-tion range of yttrium and 4) the effect of ultrasonic radiation on the limited concentration.

  • PDF

Recovery of Milk Mineral from Concentrated Skim Milk Ultrafiltration Permeate (농축 탈지유 한외여과액으로부터 우유미네럴의 회수)

  • Lim, Kwangsei;Oh, Sejong;Park, Dong June;Imm, Jee-Young
    • Journal of Dairy Science and Biotechnology
    • /
    • v.33 no.2
    • /
    • pp.153-157
    • /
    • 2015
  • Milk mineral, which is also called milk calcium, was recovered from concentrated skim milk ultrafiltration permeate (CUFP). Lactose, the major constituent of CUFP, was crystallized by the addition of ethanol; lactose precipitation was observed to increase as the ratio of CUFP to ethanol increased. The calcium content of CUFP remained constant at a CUFP to ethanol ratio of 1:2, while it significantly decreased at a CUFP to ethanol ratio of 1:4. When ethanol (95%, v/v) was reused to precipitate lactose out of CUFP, 85% of the initial lactose precipitated out, while 82% of calcium remained soluble in the CUFP after storage for 24 h.

  • PDF

Preparation of Ba2Ti9O20 by Coprecipitation Method (공침법에 의한 Ba2Ti9O20의 합성)

  • 이경희;이병하;오권오
    • Journal of the Korean Ceramic Society
    • /
    • v.25 no.6
    • /
    • pp.671-676
    • /
    • 1988
  • Preparation of high purity ultrafine Ba2Ti9O20 powder was investigated by coprecipitation method. Formation of Ba2Ti9O20 powder from precipitate of coprecipitation takes place at 120$0^{\circ}C$, which is 20$0^{\circ}C$ lower than that from mechanical mixtures of BaCO3 and TiO2. This is apparently due to the nature of the compounds formed by the reaction of mixtures of aqueous solutions of BaCl2 and TiCl4 with an ammoniacal solution of ammonium carbonate and ammouium hydroxide. In this method, the Ba2Ti9O20 powders show low callcining and sintering temperature and it has good sintering and dielectric constant at room temperature.

  • PDF

Studies on Enzymes of the Higher Fungi of Korea(IV) -Isolation and Enzymatic Properties of Cellulase from Wild Cryptoderma citrinum- (한국산(韓國産) 고등균류(高等菌類)의 효소(酵素)에 관한 연구(硏究)(IV) -야생(野生) 기와층버섯의 섬유소분해효소(纖維素分解酵素)의 분리(分離) 및 효소학적(酵素學的) 성질(性質)-)

  • Park, Wan-Hee
    • Korean Journal of Pharmacognosy
    • /
    • v.19 no.1
    • /
    • pp.28-33
    • /
    • 1988
  • To identify biologically active enzymatic components of the higher fungi in Korea, the dried carpophores of Cryptoderma citrinum was smashed with cool distilled water, extracted, salted out and the precipitate was purified by dialysing with visking tube and dissolved with pH 7.8 ammonia aqua. The fraction of the filtrate was lyophilized to obtain as light brown powder and then cellulase activity was determined. Cellulolytic potency of Cryptoderma citrinum was 750 unit/g. The optimum condition for the enzymatic reaction was pH 4.5 and $40^{\circ}$. The enzyme activity was activated in the presence of $Ca^{2+}$, $Fe^{2+}$ and $Co^{2+}$.

  • PDF

Silica and Iron Oxide Recovery and Mineral Carbonation from Serpentine Minerals Using Acid Dissolution and pH Swing Processes (산 처리와 pH 조절을 이용한 사문석군 광물로부터 규소와 철산화물 회수 및 광물 탄산화 연구)

  • Baek, Jiyeon;Jo, Yeonu;Lee, Jeongheon;Kwon, Nayoon;Kim, Yeram;Choi, Suk;Kim, Sunghee;Roh, Yul
    • Economic and Environmental Geology
    • /
    • v.49 no.1
    • /
    • pp.13-22
    • /
    • 2016
  • The objectives of this study were to recover silica and iron oxides and $CO_2$ sequestration using serpentine via various acid dissolution and pH swing processes. Serpentine collected from Guhang-myeon in S. Korea were mainly composed of antigorite and magnetite consisting of $SiO_2$ (45.3 wt.%), MgO (41.3 wt.%), $Fe_2O_3$ (12.2 wt.%). Serpentine pulverized ($${\leq_-}75{\mu}m$$) and then dissolved in 3 different acids, HCl, $H_2SO_4$, $HNO_3$. Residues treated with acidic solution were recovered from the solution (step 1). And then the residual solution containing dissolved serpentine was titrated using $NH_4OH$. And pH of the solution increased up to pH=8.6 to obtain reddish precipitates (step 2). After recovery of the precipitates, the residual solution reacted with $CO_2$ and then pH increased up to pH=9.5 to precipitate white materials (step 3). The mineralogical characteristics of the original sample and harvested precipitates were examined by XRD, and TEM-EDS analyses. ICP-AES analysis was also used to investigate solution chemistry. The dissolved ions were Mg, Si, and Fe. The antigorite became noncrystralline silica after acid treatment (step 1). The precipitate at pH=8.6 was mainly amorphous iron oxide, of which size ranged from 2 to 10 nm and mainly consisting of Fe, O, and Si (step 2). At pH=9.5, nesquehonite [$Mg(HCO_3)(OH){\cdot}2(H_2O)$] and lasfordite [$MgCO_3{\cdot}H_2O$] were formed after reaction with $CO_2$ (step 3). The size of carbonated minerals was ranged from 1 to $6{\mu}m$. These results indicated that the acid treatment of serpentine and pH swing processes for the serpentine can be used for synthesis of other materials such as silica, iron oxides and magnesium carbonate. Also, This process may be useful for the precursor synthesis and $CO_2$ sequestration via mineral carbonation.

Recovery of Rare Metals from the Waste Secondary Lithium Ion Battery Cathode Active Materials Using Lactic Acid and Oxalic acid (젖산과 옥살산을 이용한 폐 이차 리튬이온 전지 양극 활물질로부터 희유금속들의 회수)

  • Kim, Younjung;Han, Ji Sun;Choi, Sik Young;Oh, In-Gyung;Hong, Yong Pyo;Ryoo, Keon Sang
    • Journal of the Korean Chemical Society
    • /
    • v.63 no.6
    • /
    • pp.446-452
    • /
    • 2019
  • We have developed a method that can leach Co, Mn, and Ni in the cathode active material safely using lactic acid. When cathode active material was leached by lactic acid, lactic acid showed the highest efficiency at 2 N than 1 N and above 4 N concentration. When the cathode active material was added incrementally into the solution of lactic acid, the maximum solubility was 30 g/L at 2 N concentration. Oxalic acid was added in the solution of lactic acid and it showed that rare metals represent the most economical recovery efficiency at 4 g/L. Based on this study, it was found that the optimal condition for recovery of rare metals from cathode active material is oxalic acid : cathode active material = 7 : 1 as a ratio of weight. In addition, it was observed that the precipitate produced by oxalic acid is a polynuclear crystalline material bonded with 3 components of Co, Ni, and Mn.

Evaluation of the effects of two novel irrigants on intraradicular dentine erosion, debris and smear layer removal

  • Gorduysus, Melahat;Kucukkaya, Selen;Bayramgil, Nursel Pekel;Gorduysus, Mehmet Omer
    • Restorative Dentistry and Endodontics
    • /
    • v.40 no.3
    • /
    • pp.216-222
    • /
    • 2015
  • Objectives: To evaluate the effects of copolymer of acrylic acid and maleic acid (Poly[AA-co-MA]) and calcium hypochlorite ($Ca(OCl)_2$) on root canal dentin using scanning electron microscope (SEM). Materials and Methods: Twenty-four single-rooted teeth were instrumented and the apical and coronal thirds of each root were removed, leaving the 5 mm middle thirds, which were then separated into two pieces longitudinally. The specimens were randomly divided into six groups and subjected to each irrigant for 5 min as follows: G1, $Ca(OCl)_2$; G2, Poly(AA-co-MA); G3, $Ca(OCl)_2$ + Poly(AA-co-MA); G4, sodium hypochlorite (NaOCl); G5, ethylenediaminetetraacetic acid (EDTA); G6, NaOCl+EDTA. The specimens were prepared for SEM evaluation. Smear layer, debris and erosion scores were recorded by two blinded examiners. One image from G3 was analyzed with energy dispersive spectroscopy (EDS) on suspicion of precipitate formation. Data were analyzed using the Kruskal-Wallis and Dunn tests. Results: G1 and G4 showed the presence of debris and smear layer and they were statistically different from G2, G3, G5 and G6 where debris and smear layer were totally removed (p < 0.05). In G1 and G4, erosion evaluation could not be done because of debris and smear layer. G2, G3 and G5 showed no erosion, and there was no significant difference between them. G6 showed severe erosion and was statistically different from G2, G3 and G5 (p < 0.05). EDS microanalysis showed the presence of Na, P, and Ca elements on the surface. Conclusions: Poly(AA-co-MA) is effective in removing the smear layer and debris without causing erosion either alone or with $Ca(OCl)_2$.

Evaluation of Soil Improvement by Carbonate Precipitation with Urease (요소분해효소에 의한 탄산칼슘 침전을 통한 지반 개량 평가)

  • Song, Jun Young;Sim, Youngjong;Jin, Kyu-Nam;Yun, Tae Sup
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.9
    • /
    • pp.61-69
    • /
    • 2017
  • This study presents the experimental results of $CaCO_3$ formation in sand by the Enzyme Induced Carbonate Precipitation (EICP) method. Concentration of $CaCO_3$ with elapsed reaction time is calibrated by standardized procedure by measuring $CO_2$ pressure, and it increases with time towards asymptotic value. Jumunjin sand saturated with EICP solution shows that both shear wave velocity and electrical conductivity sharply increase as the reaction starts to approach to the constant values after 50 hours of reaction time. Urease concentration of 0.5 g/L exhibits 224% higher final shear wave velocity than that of 0.1 g/L. The nucleation models hint that carbonate tends to precipitate not only at grain contacts but also at grain surfaces. Regardless of urease concentration, electrical conductivity and shear wave velocity follow the unique path. The scanning electron microscopic images and X-ray computed tomographic images validate the spatial configuration of produced $CaCO_3$ in soils.

Synthesis of Iron Oxide Using Ferrous and Ferric Sulfate (황산제일철과 황산제이철을 이용한 산화철 합성)

  • Eom, Tae-Hyoung;Tuan, Huynh Thanh;Kim, Sam-Joong;Suh, Dong-Soo
    • Korean Journal of Materials Research
    • /
    • v.20 no.6
    • /
    • pp.301-306
    • /
    • 2010
  • The chemical formula of magnetite ($Fe_3O_4$) is $FeO{\cdot}Fe_2O_3$, t magnetite being composed of divalent ferrous ion and trivalent ferric ion. In this study, the influence of the coexistence of ferrous and ferric ion on the formation of iron oxide was investigated. The effect of the co-precipitation parameters (equivalent ratio and reaction temperature) on the formation of iron oxide was investigated using ferric sulfate, ferrous sulfate and ammonia. The equivalent ratio was varied from 0.1 to 3.0 and the reaction temperature was varied from 25 to 75. The concentration of the three starting solutions was 0.01mole. Jarosite was formed when equivalent ratios were 0.1-0.25 and jarosite, goethite, magnetite were formed when equivalent ratios were 0.25-0.6. Single-phase magnetite was formed when the equivalent ratio was above 0.65. The crystallite size and median particle size of the magnetite decreased when the equivalent ratio was increased from 0.65 to 3.0. However, the crystallite size and median particle size of the magnetite increased when the reaction temperature was increased from $25^{\circ}C$ to $75^{\circ}C$. When ferric and ferrous sulfates were used together, the synthetic conditions to get single phase magnetite became simpler than when ferrous sulfate was used alone because of the co-existence of $Fe^{2+}$ and $Fe^{3+}$ in the solution.