Browse > Article
http://dx.doi.org/10.5012/jkcs.2019.63.6.446

Recovery of Rare Metals from the Waste Secondary Lithium Ion Battery Cathode Active Materials Using Lactic Acid and Oxalic acid  

Kim, Younjung (Center for Instrumental Analysis, Andong National University)
Han, Ji Sun (Department of Applied Chemistry, Andong National University)
Choi, Sik Young (Department of Applied Chemistry, Andong National University)
Oh, In-Gyung (Department of Applied Chemistry, Andong National University)
Hong, Yong Pyo (Department of Applied Chemistry, Andong National University)
Ryoo, Keon Sang (Department of Applied Chemistry, Andong National University)
Publication Information
Abstract
We have developed a method that can leach Co, Mn, and Ni in the cathode active material safely using lactic acid. When cathode active material was leached by lactic acid, lactic acid showed the highest efficiency at 2 N than 1 N and above 4 N concentration. When the cathode active material was added incrementally into the solution of lactic acid, the maximum solubility was 30 g/L at 2 N concentration. Oxalic acid was added in the solution of lactic acid and it showed that rare metals represent the most economical recovery efficiency at 4 g/L. Based on this study, it was found that the optimal condition for recovery of rare metals from cathode active material is oxalic acid : cathode active material = 7 : 1 as a ratio of weight. In addition, it was observed that the precipitate produced by oxalic acid is a polynuclear crystalline material bonded with 3 components of Co, Ni, and Mn.
Keywords
Cathode active material; Lactic acid; Oxalic acid; Rare metal; Polynuclear crystalline;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Shim, J. H.; Cho, S. W.; dr Missiul, A.; Jung, H. O.; Lee, S. Journal of Power Sources 2015, 274, 659.   DOI
2 Khanderi, J.; Schneider J. Inorganica Chimica Acta 2011, 370, 254.   DOI
3 Nayaka, G. P.; Pai, K. V.; Santhosh, G.; Manjanna, J. J. Environ. Chem. Engineer. 2016, 4, 2378.   DOI
4 Porthault, H.; Le Cras, F.; Frangerb, S. Journal of Power Sources 2010, 195, 6262.   DOI
5 Nayaka, G. P.; Pai, K. V.; Santhosh, G.; Manjanna, J. Hydrometallurgy 2016, 161, 54.   DOI
6 Bokinala, K. K.; Pollet, A. M.; Grozescu, I. J. Solid State Chemistry 2013, 198, 45.   DOI
7 Li, L.; Qu, W.; Zhang, X.; Lu, J.; Chen, R.; Wu, F.; Amine, K. J. Power Sources 2015, 282, 544.   DOI
8 Nayaka, G. P.; Pai, K. V.; Santhosh, G.; Manjanna, J. Hydrometallurgy 2016, 161, 54.   DOI
9 Wang, R.; Lin, Y.; Wu, S. Hydrometallurgy 2009, 99, 194.   DOI
10 Guo, Y.; Li, F.; Zhu, H.; Li, G.; Huang, J.; He, W. Waste Management 2016, 51, 227.   DOI
11 Lee, J.; Chung, J. J. Korea Inst. of Resources Recycling 2010, 19, 51.
12 Kim, D. W.; Jang, S. T.; Baek, K. M. J. Korea Inst. of Resources Recycling 2013, 22, 43.
13 Joo, S.; Shin, D. J.; Oh, C.; Wang, J.; Senanayake, G.; Shin, S. M. Hydrometallurgy 2016, 159, 65.   DOI
14 Contestable, M, P.; Scrosati, B. J. Power Sources 1999, 83, 75.   DOI
15 Zeng, X.; Li, J.; Shen, B. J. Hazardous Materials 2015, 295, 112.   DOI
16 Li, L.; Qu, W.; Zhang, X.; Lu, J.; Amine, K. J. Power Sources 2015, 282, 544.   DOI