• Title/Summary/Keyword: closed graph

Search Result 61, Processing Time 0.028 seconds

FAINTLY ${\gamma}$-CONTINUOUS FUNCTIONS

  • Min, Won-Keun
    • The Pure and Applied Mathematics
    • /
    • v.17 no.2
    • /
    • pp.145-150
    • /
    • 2010
  • In this paper, we introduce the concepts of faintly ${\gamma}$-continuity and extremely ${\gamma}$-closed graph. And we study characterizations of such functions and relationships between faintly ${\gamma}$-continuity and extremely ${\gamma}$-closed graph.

MULTIPLICATIVELY WEIGHTED HARARY INDICES OF GRAPH OPERATIONS

  • Pattabiraman, K.
    • Journal of applied mathematics & informatics
    • /
    • v.33 no.1_2
    • /
    • pp.89-100
    • /
    • 2015
  • In this paper, we present exact formulae for the multiplicatively weighted Harary indices of join, tensor product and strong product of graphs in terms of other graph invariants including the Harary index, Zagreb indices and Zagreb coindices. Finally, We apply our result to compute the multiplicatively weighted Harary indices of fan graph, wheel graph and closed fence graph.

REMARKS ON WEAKLY $s{\gamma}$-CONTINUOUS FUNCTIONS

  • Min, Won-Keun
    • The Pure and Applied Mathematics
    • /
    • v.17 no.4
    • /
    • pp.269-273
    • /
    • 2010
  • We introduce the concepts of strongly $s{\gamma}$-closed graph, $s{\gamma}$-compactness and $s{\gamma}-T_2$ space and study the relationships between such concepts and weakly $s{\gamma}$-continuous functions.

REMARKS ON γ-OPERATIONS INDUCED BY A TOPOLOGY

  • Min, Won-Keun
    • Communications of the Korean Mathematical Society
    • /
    • v.26 no.2
    • /
    • pp.291-296
    • /
    • 2011
  • Cs$\'{a}$sz$\'{a}$r [3] introduced the notions of ${\gamma}$-compact and ${\gamma}$-operation on a topological space. In this paper, we introduce the notions of almost ${\Gamma}$-compact, (${\gamma},{\tau}$)-continuous function and (${\gamma},{\tau}$)-open function defined by ${\gamma}$-operation on a topological space and investigate some properties for such notions.

FIXED POINTS OF COUNTABLY CONDENSING MULTIMAPS HAVING CONVEX VALUES ON QUASI-CONVEX SETS

  • Hoonjoo Kim
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.36 no.4
    • /
    • pp.279-288
    • /
    • 2023
  • We obtain a Chandrabhan type fixed point theorem for a multimap having a non-compact domain and a weakly closed graph, and taking convex values only on a quasi-convex subset of Hausdorff locally convex topological vector space. We introduce the definition of Chandrabhan-set and find a sufficient condition for every countably condensing multimap to have a relatively compact Chandrabhan-set. Finally, we establish a new version of Sadovskii fixed point theorem for multimaps.

ON PAIR MEAN CORDIAL GRAPHS

  • R. PONRAJ;S. PRABHU
    • Journal of Applied and Pure Mathematics
    • /
    • v.5 no.3_4
    • /
    • pp.237-253
    • /
    • 2023
  • Let a graph G = (V, E) be a (p, q) graph. Define $${\rho}=\{\array{{\frac{p}{2}} & \;\;p\text{ is even} \\ {\frac{p-1}{2}} & \;\;p\text{ is odd,}$$ and M = {±1, ±2, … ± ρ} called the set of labels. Consider a mapping λ : V → M by assigning different labels in M to the different elements of V when p is even and different labels in M to p - 1 elements of V and repeating a label for the remaining one vertex when p is odd. The labeling as defined above is said to be a pair mean cordial labeling if for each edge uv of G, there exists a labeling ${\frac{{\lambda}(u)+{\lambda}(v)}{2}}$ if λ(u) + λ(v) is even and ${\frac{{\lambda}(u)+{\lambda}(v)+1}{2}}$ if λ(u) + λ(v) is odd such that ${\mid}{\bar{{\mathbb{S}}}}_{\lambda}{_1}-{\bar{{\mathbb{S}}}}_{{\lambda}^c_1}{\mid}{\leq}1$ where ${\bar{{\mathbb{S}}}}_{\lambda}{_1}$ and ${\bar{{\mathbb{S}}}}_{{\lambda}^c_1}$ respectively denote the number of edges labeled with 1 and the number of edges not labeled with 1. A graph G for which there exists a pair mean cordial labeling is called a pair mean cordial graph. In this paper, we investigate the pair mean cordial labeling behavior of few graphs including the closed helm graph, web graph, jewel graph, sunflower graph, flower graph, tadpole graph, dumbbell graph, umbrella graph, butterfly graph, jelly fish, triangular book graph, quadrilateral book graph.