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" In this paper, we introduce the concept of a fuzzy almost c-continuity and investigate some of its

properties.
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1. Introduction and preliminaries

The study of continuity and its weaker forms
constitutes an established branch of investigation in
general topological spaces. Recently some
researchers[1,2,7,8,16] have tried to extend these
studies to the broader framework of fuzzy topological
spaces. Using two notions of membership of a fuzzy
point to a fuzzy set, neighborhood structure of a
fuzzy point[10] and quasi-neighborhood structure of a
fuzzy point[11], an investigation of fuzzy continuity,
fuzzy almost continuity, fuzzy weak continuity, fuzzy
c-continuity and . fuzzy' H-continuity has been carried
out in [1,27,8] with almost the some degree of
success as in general topological spaces.

In this paper, we extend the notion of almost
¢-continuity introduced by S. G. Hwang[9] to fuzzy
topological spaces. Here we establish some properties
of fuzzy almést c-continuous mappings. In particular,
we discuss the relationship of fuzzy almost
c-continuous mappings with other notions of fuzzy
topological spaces such as compactness, regular
openness and H-closedness.

In ‘order to make the exposition self-contained as
far as practicable, we list some definitions and results
that will be used in the sequel. Let X be a
non-empty(ordinary) set and let I the unit interval
[0,1]. A fuzzy se¢ A in X is a mapping from
X into I. For any fuzzy set A in X the set
. {x=X:A(x) >0} is called the support of A and

denoted by S(A)[17]. A fuzzy point %, in X is a

fuzzy set in X defined by : for each y= X,

if y=x,

. i
x"(y)—{O, if y+x,

where x€X and A< (0,1] are respectively called
the support and the value of x,[11,14]. A fuzzy point
x, is said to belong to a fuzzy set A n X iff
A<A(x)11]. A fuzzy set A in X is the union
of all fuzzy points which belong to AJ[ll]l. A
subfamily T of IX is called a fuzzy topology on X
Bl if ) ©,XeT, () for any {U,} T,
U U,eT and (i) for any A,BeT,

ANBeT. In this case, each member of T is
called a fuzzy open}(in short,

F-open) set in X and its complement a fuzzy closed(in
short, F-closed) set in X. The pair (X, T) is
called a fuzzy topological space(in short, fts). For a fts
X, FO(X) and FC(X) denote the collection of
all F-open sets and F-closed sets in X, respectively.

For a fuzzy set A in a fts X, the closure clA
and the interior intA of A are defined
respectively as clA=({Vel*ACV and
Ve FO(X)} and

intA= U {VeFO(X): VCA}11].

Definition 1.1[5]. A fts X is said to be fﬂzzy T
(in short, FT,,) if for any two distinct fuzzy points
x; and y, in X, there exist U, V& FO(X)such
that x,e U, y,€V and UOV=0.

Definition 1.2[2]. Let A be a fuzzy set in a fts
X. Then :

(1) A is called a fuzzy regular open set in X if
A= int(clA).

(2) A is called a fuzzy regular closed set in X if
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A= cl(intA).

We denote the collecion of all fuzzy . regular
openfresp. closed] set in X as FRO(X) [resp.

FRC(X)].
It is clear that FRO(X)CFO(X) and
FRC(X)CFC(X).

We will use the notion of fuzzy compactness in the
sense of S. Gangly and S. Saha[6].

Result 1.A[6, Theorem 4.2]. Every F-closed set in a
compact fts is F-compact.

Result 1.B[6, Theorem 4.6]. Let X be a fts and let
AsTX. Then A is Fcompact in X if and only if
each F-open cover of A has a finite subcover.

Definition 1.3[13]. A fts X is said to be normalized
if for each x,= F,(X ), there exists Ue FO(X)

such that U(x) =1.

. Definition 1.4[13]. A fts. X 1is said to be fuzzy
locally  compact(in  short, locally  F-compact) at
x,€F,(X) if there exists a F-open set U and a

F-compact set K in X such that x,e UCK. A

fts X is said to be locally F-compact if it is locally
F-compact at each of its fuzzy points.

It is clear that every compact fts is locally compact.

Result 1.C[13, Corollary 4.2.3]. A norrpalized
FT,, -space X is locally F-compact if and only if

for each x;€F,(X) and each neighborhood V
of x,, there exists a neighborhood U of x; such

that ¢/UC V and ¢/U is Fcompact in X.

Definition 1.5[1]. A mapping f: X— Y is said to
be fuzzy almost continuous(in short, fal-continuous) at
x,€F,(X) if for each Ve FO(Y) such that
f(x;)e V, there exists a Us FO(X) such that
x;eU and f(U)Cint(clV). The mapping f
is said to be fal-continuous (on X)) if it is
fal-continuous at each x,€ F,(X)

Result 1.D[1,Theorem 4.1; 2,Theorem 7.2]. Let
f: X—Y be a mapping. Then the following are
equivalent :

(1) f is fal-continuous.

(2 For each Ve FRO(Y), f~Y(V)e FO(X).

(3) For each Fe FRC(Y), f Y (F)e FC(X)

Definition 1.6[8]. A mapping f: X— Y is said to

be  fuzzy c-continuous(in short, fe-continuous) at
x; € F,(X), if for each Ve FO(X) such that
f{x,)eV and V¢ is Fcompact in Y, there
U= FO(X) that x,€ U and
f(U)CV. The mapping f is said to be
fe-continuous(fon  X') if it is fc-continuous at each
xneF (X).

exists a such

Result 1.E[8, Theorem 2.2 and Theorem 3.3]. Let
f: X—Y be a mapping. Then the following are
equivalent : '

(1) f is fc-continuous.

(2) For each Ve FO(Y) such
Fcompact in ¥, f "W V)e FO(X).

(3) For each fuzzy closed compact set F in Y,
fTU(F)e FC(X).

that V¢ is

Definition 1.7[7]. Let AeIX. Then A is said
to be fuzzy H-closed relative to X (in short,
fH-closed) if for each F-open cover {V,} .., of
A in X, there exists a finite subfamily 'Ao of
A such that AC aLEJAo( clV,). The fts X is

said to be a fH-closed space if for each F-open

cover {V,} ,es Of X, there exists a finite
subfamily Ay of A such that
UA (cdV,)=X.
Result 1.F[7, Lemma 22]. Let X be a FT,,

-space. If B is fH-closed in X, then Be F((X).

Definition 1.8[7]. A mapping f: X— Y is said to
be fuzzy H-continuous (in short, fH-continuous) if for
each x,& F,(X) and each Ve FO(Y) such that
f(x;)eV and V° is fH-losed in Y, there exists

Ue FO(X) such that x,€ U and AU)CV.

Result 1.G[7, Theorem 24]. Let £ X—Y be a
mapping. Then the following are equivalent :

(1) f is fH-continuous.

(@ If VeFXY) and V° is fHlosed in Y,
then Y V)eFO(X).

These statements are implied by

@ i B is fH<closed in Y, then
F H(B)eFC(X).
Furthermore, if Y is FT,,, then all three

statements are equivalent.
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Let' ' f: X—~Y be a’ mapping. Then the subset
G(F) = {(x,Ax)): x€X)} of the Cartesian product
X x Y is called the graph of f.

Definition 1.9. A mapping f X—Y is said to
have a fuzzy closed graph(in short, F-closed graph) if
G(f)eFC(X xY).

Definition 1.10{7]. Let X and Y be fts’s. Then a
mapping”* f: X— Y is sald to have a fuzzy strongly
closed graph(in short, F-strongly closed graph) or the
graph G(f) is said to be fuzzy strongly closed{in
short, F-strongly cdlosed) in X xY if for each
(x,,y,)eF,(G(f)) there exist Ue FO(X)
and Ve FO(Y) such that x;€U, y,eV and

(Ux cd VYOG(f)= 0.

Definition 1.11[7]. Let X and Y be fts’s and let
f:: X—Y be a mapping. Then the graph G(f) of
f is said to have an upper fuzzy point in X xY
provided that for each (x;,y,) & F,(G(f)), there
exist Ue FO(X) and Ve FO(Y) such that
neU, y,eVand if (Ux cd VOG(f)= 2,
then there (a, b)e G(f) that

(U~ cl‘V)(a,b))%

exists such

Result 1.H[7, Lemma 3.3]. Let X and Y be fis’s,
let £ X—Y a mapping and let G(f) have an
upper fuzzy point in XxY. Then f has a
F-strongly closed graph if and only if for each

x;€F,(X) and each y,eF,(Y) such that
v+ flx), there exist, UeFOX) and
Ve FO(Y) such that x;€U, y,=V and

AU cdVv=0..

Result 1.I[7, Theorem 3.8). If a mapping £ X—Y
has a F-strongly closed graph, then it s
fH-continuous.

Definition 1.12[1}. A mapping f: X—Y is said to
be fuzzy weakly continuous(in short, F-weakly continuous)

at x,eF,(X) if for each Ve FO(Y) such that
f(x;)e V, there exists a Us FO(X) such that
x,€U and A(U)C clV.

Thq mapping f is F-weakly continuous(on X) if it is
F-weakly continuous at each x,& Fp(X).

Result 1.J[1, Theorem 5.1}. A mapping f X—Y
is F-weakly continuous if and only if for each

Ve FXY), fTUV)YCmt(f 1 (cIV)).

2. Properties of fuzzy almost

c-continuous mappings

From now on, we will denote X, Y Z as fuzzy
topological space. :

Definition 21. A mapping f: X— Y .is said to
be fuzzy almost c-continuous(in short, falc-continuous) at
xeF,(X) if for each VeFO(Y) such that

Y, there
xeU alid‘

f(x;)eV and V° is F-compact -in
Ue FO(X) such that
f(U)YC int(clV). The mapping f is

falc-continuousfon X)) if it is falc-continuous' at each

x,€ Fy(X).

exists a

mappings,
inuous

F-continuous
and  fal-cont-

Remark 22. Al
fc-continuous  mappings
mappings are falc-continuous.

- Theorem 2.3. For a f: X— Y be a mapping, the
following are equivalent :

(1) f is falc-continuous. o

(2) For each V& FRO(Y) such that. V° .is
F-compact in Y, f~Y(V)eFO(X).

(3) For each Fe FRC(Y) such that F is
Fcompact in ¥, f~'(F) e FC(X). 7
(49 For each x,€ Fp(X)
Ve FRO(X) containing f(x,) having F-comi:act
complement, there exists UsFO(X) such that

x;€ U and f(U)C V.
(5) For each x,€F,(X) and each VEFO( Y)
containing  f(x;) having F-compact complement,

f W int(cIV)) € FO(X) s

and  each

Theorem 2.4. Any restricion of a falc-continuous
mapping is also falc- continuous. s

Theorem 25. If f: X— Y is F-continuous and
g: Y— Z is falc-continuous, then g- f: X—Z.'is
falc-continuous. o

Theorem 26. Let f: X— Y be Fopen and
surjective. If g - f: X— Z is falc-continuous, . then
g: Y— Z is falc-continuous.

Lemma 27. Llet f: X— Y be a mapﬁiﬁg and let
x, € F,,(X). If there exists a Ue FO(X) such
that x,eU, U= S(U) and flyp: U—~Y s
falc-continuous at x,, then f is falc-continuous at

%3

Theorem 2.8. Let {U,} ,c, be a fuzzy open cover
of X such that U, = S(U,) for each ¢ A and
let f: XY a mapping. f f| ,:U,—Y is
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falccontinuous for each a=A, then, f  is
falc-continuous. o ’

Theorem 29. Let f: X— Y be a mapping and let
X = AUB, where A,Be FC(X),
A=S(A)and B= S(B). If A1, and fly are

falc-continuous, then f is falc-continuous.

Theorem 210. Let f: X— Y be a mapping and

let X=AUB, where A= S(A) and
B=S(B). If both A, and flg are
falc-continuous at x,€ A(B, there f is

falc-continuous at x,.

Theorem 211. Let f: X— Y be falc-continuous. If
Y is a locally compact FT,,-space, then f has
fuzzy closed graph.

Theorem 2.12. Let f: X— Y be a mapping and
let g: X— XxY the graph mapping of f. f X
is F-compact and g is falc-continuous, then f is
falc-continuous.

3. Further results

Theorem 3.1. Let Y be a normalized locally
compact FT,, -space. If f: X— Y is falc-continuous
and G(f) has an upper fuzzy point in Xx Y,
then G(f) is F-strongly closed in X'x V.

The following is the immediate result of Result 1.H
and Theorem 3.1 :

Corollary 3.1. Let Y be a normalized locally
compact FT,,-space, let G(f) have an upper
fuzzy point in XxY and let £ X—Y be a
mapping. Then the following are equivalent:

(1) G(f) is F-strongly closed in Xx Y ..

(2) f is fH-continuous.

(3) f is fc-continuous.

(4) f is falc-continuous.

Theorem 3.3. Let £ X— Y be falccontinuous. If
Y is a compact fts(resp. compact FT,-space), then

f is fal-continuous(resp. F-continuous).

Lemma 34. If f: X—Y is F-weakly continuous
and K is Fcompact in X, then f(X) is fH-closed
in Y.

Theorem 3.5. Let
normalized locally compact
fi:X—Y, be falccontinuous for each g=/. If

{Y,} 4en be a family of
FT,, -spaces and let

G(f,) has an upper fuzzy point in Xx Y, for

eacch a@=A, then the mapping f X— HA Y,

defined by f(x) = (f,(x)) ,c4 for each x= X, is
fH-continuous.
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