ISSN 1226-0657

J. Korean Soc. Math. Educ. Ser. B: Pure Appl. Math. Volume 17, Number 2 (May 2010), Pages 145–150

FAINTLY γ -CONTINUOUS FUNCTIONS

WON KEUN MIN

ABSTRACT. In this paper, we introduce the concepts of faintly γ -continuity and extremely γ -closed graph. And we study characterizations of such functions and relationships between faintly γ -continuity and extremely γ -closed graph.

1. INTRODUCTION

In [5], the author introduced the notions of γ -open sets and γ -continuity which are generalized notions of semiopen sets and semicontinuity, respectively. Latif investigated some properties of functions induced by γ -open sets in [2, 3]. The author introduced and investigated the notion of weakly γ -continuous functions which is a generalization of γ -continuity in [6]. In this paper, the notion of faintly γ -continuity is introduced, which is a generalization of weakly γ -continuity. The notion of extremely γ -closed graph is also introduced. And the relationships between faintly γ -continuity and extremely γ -closed graph are investigated.

Let X and Y be topological spaces on which no separation axioms are assumed unless explicit stated. Let S be a subset of X. The closure (resp. interior) of S will be denoted by cl(S) (resp. int(S)). A subset S of X is called *semi-open set* [4] if $S \subseteq cl(int(S))$. The complement of a semi-open set is called *semi-closed set*.

A subset M(x) of a space X is called a *semi-neighborhood* of a point $x \in X$ if there exists a semi-open set S such that $x \in S \subseteq M(x)$. In [1], Latif introduced the notion of semi-convergence of filters. And he investigated some characterizations related to semi-open continuous functions. Now we recall the concept of semi-convergence of filters. Let $S(x) = \{A \in SO(X) : x \in A\}$ and let $S_x = \{A \subseteq X :$ there exists $\mu \subseteq S(x)$ such that μ is finite and $\cap \mu \subseteq A\}$. Then S_x is called the *semi-neighborhood filter* at x. For any filter F on X, we say that F semi-converges to x if and only if F

© 2010 Korean Soc. Math. Educ.

Received by the editors as revision July 15, 2009. Accepted May 11, 2010.

²⁰⁰⁰ Mathematics Subject Classification. 54C08.

Key words and phrases. faintly γ -continuous, weakly γ -continuous, extremely γ -closed graph.

WON KEUN MIN

is finer than the semi-neighborhood filter at x. A subset U of X is called a γ -open set [5] in X if whenever a filter F semi-converges to x and $x \in U, U \in F$.

The class of all γ -open sets in X will be denoted by $\gamma(X)$. We recall the following notions defined in [6]: X is said to be γ - T_2 if for every two distinct points x and y in X, there exist two disjoint γ -open sets U and V such that $x \in U$ and $y \in V$. The γ *interior* of a set A in X, denoted by $I_{\gamma}(A)$, is the union of all γ -open sets contained in A. The γ -closure of a set A in X, denoted by $Cl_{\gamma}(A)$, $Cl_{\gamma}(A) = \{x \in X : A \cap U \neq \emptyset$ for all $U \in S_x\}$.

Theorem 1.1 ([5]). Let (X, τ) be a topological space and $A \subseteq X$.

- (1) $I_{\gamma}(A) = \{x \in A : A \in S_x\}.$
- (2) A is γ -open set if and only if $A = I_{\gamma}(A)$.
- (3) $I_{\gamma}(A) \subseteq A \subseteq Cl_{\gamma}(A).$
- (4) A is γ -closed if and only if $A = Cl_{\gamma}A$.
- (5) $I_{\gamma}(A) = X Cl_{\gamma}(X A).$
- (6) $Cl_{\gamma}(A) = X I_{\gamma}(X A).$

Definition 1.2 ([5, 6]). Let $f : (X, \tau) \to (Y, \mu)$ be a function on two topological spaces. Then

(1) f is said to be weakly γ -continuous [6] if for each $x \in X$ and each open set V containing f(x), there is a γ -open set U containing x such that $f(U) \subseteq cl(V)$.

(2) f is said to be γ -continuous [5] if the inverse image of each open set of Y is a γ -open set in X.

Latif [2] showed that f is γ -continuous if and only if for each $x \in X$ and each open set V containing f(x), there is a γ -open set U containing x such that $f(U) \subseteq V$.

2. Faintly γ -continuity

We recall that a point $x \in X$ is called a θ -cluster point [8] of A if $A \cap cl(V) \neq \emptyset$ for every open set V containing x. The set of all θ -cluster points of A is called θ -closure of A and is denoted by $Cl_{\theta}(A)$. If $A = Cl_{\theta}(A)$, then A is called θ -closed. The complement of a θ -closed set is said to be θ -open. The union of $\{U \subseteq X : U \subseteq A \text{ for } \theta$ -open set U of $X\}$ is called the θ -interior of A and is denoted by $I_{\theta}(A)$.

Definition 2.1. Let (X, τ) and (Y, μ) be two topological spaces. Then $f: X \to Y$ is said to be *faintly* γ -continuous at $x \in X$ if for each θ -open subset V containing f(x), there is a γ -open set U containing x such that $f(U) \subseteq V$. A function f:

 $(X, \tau) \to (Y, \mu)$ is said to be *faintly* γ -continuous if it has the property at each point of X.

Theorem 2.2. Every weakly γ -continuous function is faintly γ -continuous.

Proof. Let $f : (X, \tau) \to (Y, \mu)$ be a weakly γ -continuous function on topological spaces X, Y. For $x \in X$, let V be a θ -open set containing f(x). Then there exists an open set G such that $f(x) \subseteq G \subseteq cl(G) \subseteq V$. By hypothesis, there exists a γ -open set U containing x such that $f(U) \subseteq cl(G) \subseteq V$. Hence f is faintly γ -continuous. \Box

In Theorem 2.2, the converse is not true in general as shown in the next example.

Example 2.3. Let $X = \{a, b, c, d\}$ and $\tau = \{\emptyset, \{d\}, \{a, b\}, \{a, b, d\}, X\}$ a topology on X. Then $\gamma(X) = \{\emptyset, \{c\}, \{d\}, \{c, d\}, \{a, b\}, \{a, b, c\}, \{a, b, d\}, X\}.$

Consider a function $f : (X, \tau) \to (X, \tau)$ defined as follows f(a) = d, f(b) = aand f(c) = f(d) = b. Then since X is the only nonempty θ -open set in (X, τ) , obviously f is faintly γ -continuous. But f is not weakly γ -continuous at a because of $cl(\{d\}) = \{c, d\}, f(\{a, b\}) = \{a, d\}$ and $f(\{a, b, c\}) = f(\{a, b, d\}) = \{a, b, d\}$. Hence f is not weakly γ -continuous.

The following implications are obtained:

continuous \Rightarrow semicontinuous $\Rightarrow \gamma$ -continuous

 \Rightarrow weakly γ -continuous \Rightarrow faintly γ -continuous

Theorem 2.4. Let $f : (X, \tau) \to (Y, \mu)$ be a function on topological spaces (X, τ) and (Y, μ) . Then the following statements are equivalent:

- (1) f is faintly γ -continuous.
- (2) $f^{-1}(V)$ is a γ -open set for every θ -open subset V of Y.
- (3) $f^{-1}(K)$ is a γ -closed set for every θ -closed set K of Y.

Proof. (1) \Rightarrow (2) Let V be a θ -open set in Y and $x \in f^{-1}(V)$. Then there exists a γ -open set U of X containing x such that $f(U) \subseteq V$. Since $x \in U \subseteq f^{-1}(V)$, by the definition of γ -interior, $x \in I_{\gamma}(f^{-1}(V))$ and so $f^{-1}(V) \subseteq I_{\gamma}(f^{-1}(V))$. Hence, $f^{-1}(V)$ is a γ -open set.

(2) \Rightarrow (1) Let $x \in X$ and V any θ -open set in Y containing f(x). By (2), we know that $f^{-1}(V)$ is a γ -open set containing x. Set $U = f^{-1}(V)$, then it satisfies $f(U) \subseteq V$. Hence f is faintly γ -continuous.

 $(2) \Leftrightarrow (3)$ It is obvious.

WON KEUN MIN

Theorem 2.5. Let $f : (X, \tau) \to (Y, \mu)$ be a function on topological spaces (X, τ) and (Y, μ) . Then if f is faintly γ -continuous and if Y is regular, then it is γ -continuous.

Proof. Let V be any open set in Y. Then since Y is regular, V is θ -open. From Theorem 2.4 (2), f is γ -continuous.

Corollary 2.6. Let $f : (X, \tau) \to (Y, \mu)$ be a function on topological spaces (X, τ) and (Y, μ) . Then if f is faintly γ -continuous and if Y is regular, then it is weakly γ -continuous.

A topological space X is said to be θ -T₂ [7] if each distinct $x, y \in X$, there exist θ -open sets U, V containing x and y, respectively, such that $U \cap V = \emptyset$.

Theorem 2.7. Let $f : (X, \tau) \to (Y, \mu)$ be a function on topological spaces (X, τ) and (Y, μ) . Then if f is faintly γ -continuous injection and if Y is θ - T_2 , then X is γ - T_2 .

Proof. Let x_1 and x_2 be two distinct elements in X, then $f(x_1) \neq f(x_2)$. There exist two θ -open sets U and V in Y containing $f(x_1)$, $f(x_2)$, respectively, such that $U \cap V = \emptyset$. Since f is faintly γ -continuous, there exist γ -open sets U_1 , V_2 containing x_1, x_2 , respectively, such that $f(U_1) \subseteq U$, $f(V_2) \subseteq V$. So $U_1 \cap V_2 = \emptyset$ and hence X is γ - T_2 .

A subset K of a topological space (X, τ) is said to be θ -compact relative to (X, τ) [8] if every cover of K by θ -open subsets of X has a finite subcover. A topological space (X, τ) is said to be θ -compact if the set X is θ -compact relative to (X, τ) .

Theorem 2.8. Let $f : (X, \tau) \to (Y, \mu)$ be a function on topological spaces (X, τ) and (Y, μ) . If f is faintly γ -continuous and K is γ -compact, then f(K) is θ -compact relative to (Y, μ) .

Proof. Let $\{V_i : i \in J\}$ be a cover of f(K) by θ -open subsets of Y. For each $x \in X$, there exists $i(x) \in J$ such that $f(x) = y \in V_{i(x)}$. Since f is faintly γ -continuous, there exists a γ -open set U(x) containing x such that $f(U(x)) \subseteq V_{i(x)}$. The family $\{U(x) : x \in K\}$ is a cover of K by γ -open sets in X. Since K is γ -compact, there is a finite subcover $\{U(x_1), U(x_2), \cdots, U(x_n) : x_j \in K, j = j_1, j_2, \cdots, j_n\}$ such that $K \subseteq \cup U(x_j)$. Then

$$f(K) \subseteq f(\cup U(x_j)) = \cup f(U(x_j) \subseteq \cup V_{i(x_j)}).$$

Hence f(K) is θ -compact relative to (Y, μ) .

Definition 2.9. Let $f : (X, \tau) \to (Y, \mu)$ be a function on topological spaces (X, τ) and (Y, μ) . We call f has an *extremely* γ -closed graph if for each $(x, y) \notin G(f)$, there exist a γ -open set U and a θ -open set V containing x and y, respectively, such that $(U \times V) \cap G(f) = \emptyset$.

Lemma 2.10. Let $f : (X, \tau) \to (Y, \mu)$ be a function on topological spaces (X, τ) and (Y, μ) . Then f has an extremely γ -closed graph if and only if for each $(x, y) \notin G(f)$, there exist a γ -open set U and a θ -open set V containing x and y, respectively, such that $f(U) \cap V = \emptyset$.

Proof. Obvious.

Theorem 2.11. Let $f : (X, \tau) \to (Y, \mu)$ be a function on topological spaces (X, τ) and (Y, μ) . If f is faintly γ -continuous and Y is θ -T₂, then f has an extremely γ -closed graph.

Proof. Let $(x, z) \notin G(f)$. Then $z \neq f(x)$ and since Y is θ -T₂, there exist two θ -open sets U and V containing z and f(x), respectively, such that $U \cap V = \emptyset$. Since f is faintly γ -continuous, there exists a γ -open set H containing x such that $f(H) \subseteq V$. It implies $f(H) \cap U = \emptyset$. Hence f has an extremely γ -closed graph.

Theorem 2.12. Let $f : (X, \tau) \to (Y, \mu)$ be a function on topological spaces (X, τ) and (Y, μ) . If f is a faintly γ -continuous injection with an extremely γ -closed graph, then X is γ - T_2 .

Proof. Let x_1 and x_2 be two distinct elements in X, then $f(x_1) \neq f(x_2)$. This implies that $(x_1, f(x_2)) \in (X \times Y) - G(f)$. Since f has an extremely γ -closed graph, there exist a γ -open set U and a θ -open set V containing x_1 and $f(x_2)$, respectively, such that $f(U) \cap V = \emptyset$. Since f is faintly γ -continuous, there exists a γ -open set W containing x_2 such that $f(W) \subseteq V$. It implies $f(W) \cap f(U) = \emptyset$. Therefore $W \cap U = \emptyset$ and so X is a γ - T_2 space. \Box

Theorem 2.13. Let $f : (X, \tau) \to (Y, \mu)$ be a function on topological spaces (X, τ) and (Y, μ) . If f has an extremely γ -closed graph and K is γ -compact in (X, τ) , then f(K) is θ -closed in (Y, μ) .

Proof. Let $y \notin f(K)$. Then $(x, y) \notin G(f)$ for each $x \in K$. Since G(f) is extremely γ -closed, there exist a γ -open set U_x containing x and a θ -open set V_x containing y such that $f(U_x) \cap V_x = \emptyset$. Since K is γ -compact and $\{U_x : x \in K\}$ is a cover of K by γ -open sets, there exists a finite subset K_0 of K such that $K \subseteq \bigcup \{U_x : x \in K_0\}$.

WON KEUN MIN

Put $V = \cap \{V_x : x \in K_0\}$. Then V is a θ -open set containing y. Thus

$$f(K) \cap V \subseteq \bigcup_{x \in K_0} f(U_x) \cap V \subseteq \bigcup_{x \in K_0} (f(U_x) \cap V) = \emptyset.$$

This implies $y \notin Cl_{\theta}(f(K))$. Hence f(K) is θ -closed in Y.

References

- R.M. Latif: Semi-convergence of filters and nets. Math. J. Okayama University 41 (1999), 103-109.
- <u>—</u>: Characterizations of mappings in γ-open sets. *KFUPM.*, *Technical Report* 332 (2005), 103-109.
- Characterizations of Mappings in Gamma-Open Sets. Soochow Journal of Mathematics 33 (2007), no. 2, 187-202.
- N. Levine: Semi-open Sets and Semi-continuity in Topological Spaces. Amer. Math. Monthly 70 (1963), 36-41.
- W.K. Min: γ-sets and γ-continuous functions. Inter. J. Math. & Math. Sci. 31 (2002), no. 3, 177-181.
- 6. _____: On Weakly γ-continuous Functions. Honam Math. J. 30(2008), no. 3, 435-442.
- T. Noiri: Faintly m-continuous functions. Chaos, Solitons & Fracals 19 (2004), 1147-1159.
- 8. N.V. Velicko: H-closed topological Spaces. Amer. Math. Soc. Transl. 78 (1968), 103-118.

DEPARTMENT OF MATHEMATICS, KANGWON NATIONAL UNIVERSITY, CHUNCHEON 200-701, Ko-REA

Email address: wkmin@cc.kangwon.ac.kr