Commun. Korean Math. Soc. **26** (2011), No. 2, pp. 291–296 DOI 10.4134/CKMS.2011.26.2.291

REMARKS ON γ -OPERATIONS INDUCED BY A TOPOLOGY

WON KEUN MIN

ABSTRACT. Császár [3] introduced the notions of γ -compact and γ -operation on a topological space. In this paper, we introduce the notions of almost Γ -compact, (γ, τ) -continuous function and (γ, τ) -open function defined by γ -operation on a topological space and investigate some properties for such notions.

1. Introduction and preliminaries

Let X be a non-empty set with the power set $\exp X$. A function $\gamma : \exp X \to$ exp X is said to be *monotonic* [2] if and only if $A \subseteq B \subseteq X$ implies $\gamma A \subseteq \gamma B$. The collection of all monotonic functions is denoted by $\Gamma(X)$ and the elements of $\Gamma(X)$ are said to be operations. If $\gamma \in \Gamma(X)$, then a set $A \subseteq X$ is said to be γ -open [2] if $A \subseteq \gamma A$. For $A \subseteq X$, we denote by $i_{\gamma}A$ the union of all γ -open sets contained in A, i.e., the largest γ -open set contained in A. The complement of a γ -open set is said to be γ -closed. Any intersection of γ -closed sets is γ -closed, and for $A \subseteq X$, we denote by $c_{\gamma}A$ the intersection of all γ closed sets containing A, i.e. the smallest γ -closed set containing A. If τ is a topology on X and we write c for closure, i for interior, s = ci, p = ic, $\alpha = ici$, $\beta = cic$, then $c, i, s, p, \alpha, \beta$ are all all elements of $\Gamma(X)$ and s-open, p-open, α -open, β -open sets are said to be semiopen [5], preopen [6], α -open [7], β -open [1], respectively. Let $\gamma \in \Gamma(X)$ and $\gamma' \in \Gamma(Y)$. Then a function $f: X \to Y$ is said to be (γ, γ') -continuous [4] if for each γ' -open set V in Y, $f^{-1}(V)$ is γ -open in X. And f is said to be (γ, γ') -open [4] if for each γ -open set A in X, f(A) is γ' -open in Y. In this paper, we introduce the notions of (γ, τ) continuous function and (γ, τ) -open function and investigate characterizations for such functions. We also introduce the notion of almost Γ -compact defined by γ -operation on a topological space.

Theorem 1.1 ([2]). Let $\gamma \in \Gamma(X)$ and $A \subseteq X$. Then the statements are hold: (1) Any union of γ -open sets is γ -open.

O2011 The Korean Mathematical Society

Received November 26, 2009; Revised December 14, 2010.

²⁰¹⁰ Mathematics Subject Classification. 54A05.

Key words and phrases. (γ, τ) -continuous, (γ, τ) -open, Γ -closed graph, strongly Γ -closed graph, γ -compact, almost Γ -compact.

WON KEUN MIN

(2)
$$i_{\gamma}A = X - c_{\gamma}(X - A), \ c_{\gamma}A = X - i_{\gamma}(X - A).$$

2. (γ, τ) -continuous function and (γ, τ) -open function

We recall the notion of γ -operation introduced in [3]: Let (X, μ) be a topological space, and $\gamma : \exp X \to \exp X$ a mapping such that

(1) $A \subseteq B \Rightarrow \gamma A \subseteq \gamma B$.

(2) $\gamma \emptyset = \emptyset, \ \gamma X = X.$

(3) For $A \subseteq X$ and an open set $G \subseteq X$, $G \cap \gamma A \subseteq \gamma(G \cap A)$.

Now we call the mapping γ an associated operation with μ on X. We will denote an associated operation γ with μ by γ_{μ} (simply γ).

According to [2], a set $A \subseteq X$ is said to be γ -open if and only if $A \subseteq \gamma A$. Let (X, μ) be a topological space and γ an associated operation with μ . Then an open set is always γ -open [3].

Definition 2.1. Let (X, μ) and (Y, τ) be topological spaces and γ an associated operation with μ . Then a function $f : (X, \mu) \to (Y, \tau)$ is (γ, τ) -continuous if for every open set F in Y, $f^{-1}(F)$ is γ -open in X.

Remark 2.2. Let (X, μ) and (Y, τ) be topological spaces and let γ and γ' associated operations with μ and τ , respectively. Then the (γ, γ') -continuous function $f: X \to Y$ is (γ, τ) -continuous if the associated operation $\gamma' : \exp Y \to \exp Y$ is defined by $\gamma' = int$, where *int* is the *interior* in Y.

Theorem 2.3. Let $f: (X, \mu) \to (Y, \tau)$ be a function on topological spaces and γ an associated operation with μ . Then f is (γ, τ) -continuous if and only if for each $x \in X$ and each open set V containing f(x), there exists a γ -open set U containing x such that $f(U) \subseteq V$.

Proof. Suppose f is (γ, τ) -continuous. Then for each $x \in X$ and each open set V containing f(x), $f^{-1}(V)$ is γ -open. Now put $U = f^{-1}(V)$, then the γ -open U satisfies that $x \in U$ and $f(U) \subseteq V$.

For the converse, let V be an open set in Y. Then for each $x \in f^{-1}(V)$, by hypothesis, there exists a γ -open set U containing x such that $U \subseteq f^{-1}(V)$, and so $f^{-1}(V) = \bigcup U$. By Theorem 1.1(1), $f^{-1}(V)$ is γ -open. \Box

Theorem 2.4. Let $f: (X, \mu) \to (Y, \tau)$ be a function on topological spaces and γ an associated operation with μ . Then a function f is (γ, τ) -continuous if and only if $f^{-1}(int(B)) \subseteq \gamma f^{-1}(B)$ for $B \subseteq Y$.

Proof. Let f be (γ, τ) -continuous and $B \subseteq Y$. Since $f^{-1}(int(B))$ is γ -open in X and γ is monotonic,

$$f^{-1}(int(B)) \subseteq \gamma f^{-1}(int(B)) \subseteq \gamma f^{-1}(B).$$

For the converse, let B be open in Y. Then by hypothesis, $f^{-1}(B) = f^{-1}(int(B)) \subseteq \gamma f^{-1}(B)$, so that $f^{-1}(B)$ is γ -open in X. Hence f is (γ, τ) -continuous.

Theorem 2.5. Let $f : (X, \mu) \to (Y, \tau)$ be a function on topological spaces and γ an associated operation with μ . Then the following are equivalent:

- (1) f is (γ, τ) -continuous.
- (2) For every closed set F in Y, $f^{-1}(F)$ is γ -closed in X.
- (3) $f^{-1}(int(B)) \subseteq i_{\gamma}f^{-1}(B)$ for $B \subseteq Y$.
- (4) $c_{\gamma}f^{-1}(B) \subseteq f^{-1}(cl(B))$ for $B \subseteq Y$.
- (5) $f(c_{\gamma}A) \subseteq cl(f(A))$ for $A \subseteq X$.

Proof. Straightforward.

Definition 2.6. Let (X, τ) and (Y, ν) be topological spaces and γ an associated operation with ν . Then a function $f : (X, \tau) \to (Y, \nu)$ is said to be (τ, γ) -open if for every open set G in X, f(G) is γ -open in Y.

Remark 2.7. Let (X, τ) and (Y, ν) be topological spaces and let γ and γ' associated operations with τ and ν , respectively. Then the (γ, γ') -open function $f : X \to Y$ is (τ, γ') -open if $\gamma : \exp X \to \exp X$ is a mapping defined by $\gamma = int$, where *int* is the *interior* in X.

Theorem 2.8. Let $f : (X, \tau) \to (Y, \nu)$ be a function on topological spaces and γ an associated operation with ν . Then the following equivalent:

- (1) f is (τ, γ) -open.
- (2) $int(f^{-1}(B)) \subseteq f^{-1}(i_{\gamma}B)$ for $B \subseteq Y$.
- (3) $f^{-1}(c_{\gamma}B) \subseteq cl(f^{-1}(B))$ for $B \subseteq Y$.
- (4) $f(int(A)) \subseteq i_{\gamma}f(A)$ for $A \subseteq X$.

Proof. (1) \Rightarrow (2) For $B \subseteq Y$, by (1), $f(int(f^{-1}(B)))$ is a γ -open set such that $f(int(f^{-1}(B))) \subseteq B$. It implies $f(int(f^{-1}(B))) \subseteq i_{\gamma}B$, and hence $int(f^{-1}(B)) \subseteq f^{-1}(i_{\gamma}B)$.

- (2) \Leftrightarrow (3) It follows from Theorem 1.1.
- $(2) \Rightarrow (4)$ Obvious.

 $(4) \Rightarrow (1)$ Let A be open in X; then by $(4) f(A) = f(int(A)) \subseteq i_{\gamma}f(A)$, and so $f(A) = i_{\gamma}f(A)$. Thus f(A) is γ -open.

Theorem 2.9. Let a function $f : (X, \tau) \to (Y, \nu)$ be topological spaces and γ an associated operation with ν . Then f is (τ, γ) -open if and only if for $A \subseteq X$, $f(int(A)) \subseteq \gamma f(A)$.

Proof. Suppose that f is (τ, γ) -open. Then for $A \subseteq X$, by Theorem 2.8, $f(int(A)) \subseteq i_{\gamma}f(A)$ and since $i_{\gamma}f(A) \subseteq \gamma i_{\gamma}f(A)$ and γ is monotonic, we have

$$f(int(A)) \subseteq i_{\gamma}f(A) \subseteq \gamma i_{\gamma}f(A) \subseteq \gamma f(A).$$

The converse is obvious.

Definition 2.10. Let (X, μ) be a topological space and γ an associated operation with μ . Then X is Γ -T₂ if for every two distinct points x and y in X, there exist two γ -open sets U and V containing x and y, respectively, such that $U \cap V = \emptyset$.

Definition 2.11. Let (X, μ) and (Y, τ) be topological spaces and γ an associated operation with μ . A function $f : X \to Y$ has a Γ_{τ} -closed graph (resp. strongly Γ_{τ} -closed graph) if for each $(x, y) \in (X \times Y) - G(f)$, there exist a γ -open set U and an open set V containing x and y, respectively, such that $(U \times V) \cap G(f) = \emptyset$ (resp. $(U \times cl(V)) \cap G(f) = \emptyset$), where $G(f) = \{(x, f(x)) : x \in X\}$.

Lemma 2.12. Let (X, μ) and (Y, τ) be topological spaces and γ an associated operation with μ . A function $f: X \to Y$ has a Γ_{τ} -closed graph (resp. strongly Γ_{τ} -closed graph) if for each $(x, y) \notin G(f)$, there exist a γ -open set U and an open set V containing x and y, respectively, such that $f(U) \cap V = \emptyset$ (resp. $f(U) \cap cl(V) = \emptyset$).

Theorem 2.13. Let (X, μ) and (Y, τ) be topological spaces and γ an associated operation with μ . If $f: X \to Y$ is (γ, τ) -continuous and Y is a T_2 space, then f has a strongly Γ_{τ} -closed graph.

Proof. Let $x, y \in (X \times Y) - G(f)$. Then $y \neq f(x)$ and since Y is T_2 , there exist two open sets U and V such that $f(x) \in U$, $y \in V$ and $U \cap V = \emptyset$ and so $U \cap cl(V) = \emptyset$. Since f is (γ, τ) -continuous, by Theorem 2.3, there exists a γ -open set W of x such that $f(W) \subset U$, and so $f(W) \cap cl(V) = \emptyset$. Thus by Lemma 2.12, f has a strongly Γ_{τ} -closed graph. \Box

Theorem 2.14. Let (X, μ) and (Y, τ) be topological spaces and γ an associated operation with μ . If $f: X \to Y$ is a surjective function with a strongly Γ_{τ} -closed graph, then Y is T_2 -space.

Proof. Let y and z be distinct points in Y. Then there exists an $x \in X$ such that f(x) = y. Thus $(x, z) \notin G(f)$, since f has a strongly Γ_{τ} -closed graph, there exist a γ -open set U and an open set V of x and z, respectively, such that $f(U) \cap cl(V) = \emptyset$. This implies $y \notin cl(V)$, so there exists an open set W such that $W \cap V = \emptyset$. Consequently, Y is T_2 .

Theorem 2.15. Let (X, μ) and (Y, τ) be topological spaces and γ an associated operation with μ . If $f: X \to Y$ is a (γ, τ) -continuous injection with a Γ_{τ} -closed graph, then X is Γ -T₂.

Proof. Let x_1 and x_2 be two distinct elements in X. Then $f(x_1) \neq f(x_2)$. This implies that $(x_1, f(x_2)) \in (X \times Y) - G(f)$. By hypothesis, there exist a γ -open set U and an open set V of x_1 and $f(x_2)$, respectively, such that $(U \times V) \cap G(f) = \emptyset$. Since f is (γ, τ) -continuous, there exists a γ -open set W containing x_2 such that $f(W) \subset V$. Hence $f(W \cap U) \subseteq f(W) \cap f(U) = \emptyset$. Therefore $W \cap U = \emptyset$ and so X is Γ - T_2 .

Let (X, μ) be a topological space and γ an associated operation with μ . A collection $\mathbf{S} = \{S_i \subseteq X : S_i \text{ is } \gamma \text{-open, } i \in I\}$ is called a $\gamma \text{-open cover for } X$ if $X = \bigcup_{i \in I} S_i$. The space (X, μ) is said to be $\gamma \text{-compact}$ (resp. *almost* $\gamma \text{-compact}$) [3] if for each γ -open cover $\mathbf{S} = \{S_i \subseteq X : S_i \text{ is } \gamma \text{-open, } i \in I\}$, there exists a finite index set $F \subseteq I$ such that $X = \bigcup_{i \in F} S_i$ (resp. $X = \bigcup_{i \in F} cl(S_i)$). And we recall that a topological space (X, μ) is said to be *quasi H*-closed [8] if for each open cover $\mathbf{C} = \{G_i \subseteq X : G_i \text{ is open, } i \in I\}$, there exists a finite index set $F \subseteq I$ such that $X = \bigcup_{i \in F} cl(G_i)$.

Definition 2.16. Let (X, μ) be a topological space and γ an associated operation with μ . The space (X, μ) is said to be *almost* Γ -compact if for each γ -open cover $\mathbf{S} = \{S_i \subseteq X : S_i \text{ is } \gamma$ -open, $i \in I\}$, there exists a finite index set $F \subseteq I$ such that $X = \bigcup_{i \in F} c_{\gamma} S_i$.

Remark 2.17. Let (X, μ) be a topological space and γ an associated operation with μ . Since every open set is γ -open, in general, $c_{\gamma}(A) \subseteq cl(A)$. So obviously the following implications are obtained but the converses may not be true as shown in the next example.

 $\gamma\text{-compact} \Rightarrow \text{almost}\ \Gamma\text{-compact} \Rightarrow \text{almost}\ \gamma\text{-compact}$

Example 2.18. (1) Let X be a topological space and the associated operation $\gamma = int$ in X. Then since γ -compactness is compactness and almost Γ -compactness (almost γ -compactness) is quasi H-closedness, generally the converse is not true.

(2) Let N denote the set of natural numbers. Consider a topology $\mu = \{\emptyset, N_o, N_e, N\}$ where $N_o = \{2n - 1 : n \in N\}$ and $N_e = \{2n : n \in N\}$. Define $\gamma : \exp N \to \exp N$ by $\gamma(A) = int(cl(A))$ for $A \in \exp(N)$. Then the mapping γ is an associated operation with μ on N. Obviously the set of all γ -open sets is $\exp N$, and so we get the conclusion that the space N is almost γ -compact but not almost Γ -compact.

Theorem 2.19. Let (X, μ) and (Y, τ) be topological spaces and γ an associated operation with μ . Let $f : X \to Y$ be a surjective (γ, τ) -continuous function. Then if X is γ -compact, then Y is compact.

Proof. Obvious.

Theorem 2.20. Let (X, μ) and (Y, τ) be topological spaces and γ an associated operation with μ . Let $f : X \to Y$ be a (γ, τ) -continuous and surjective function. If X is almost Γ -compact, then Y is quasi H-closed.

Proof. Let $S = \{S_i : i \in J\}$ be an open cover of Y. Then $\{f^{-1}(S_i) : S_i \in S, i \in J\}$ is a γ -open cover of X and by almost Γ -compactness, there is a finite subcover $\{c_{\gamma}f^{-1}(S_{j_1}), c_{\gamma}f^{-1}(S_{j_2}), \ldots, c_{\gamma}f^{-1}(S_{j_n}) : S_j \in S, j = j_1, j_2, \ldots, j_n\}$ such that $X \subseteq \cup c_{\gamma}f^{-1}(S_j)$. Then from Theorem 2.5(4),

$$Y = f(X) \subseteq f(\cup c_{\gamma} f^{-1}(S_j)) \subseteq \cup f(f^{-1}(cl(S_j))) \subseteq \cup cl(S_j).$$

Hence Y is quasi H-closed.

295

WON KEUN MIN

References

- M. E. Abd El-Monsef, S. N. El-Deeb, and R. A. Mahmoud, β-open sets and β-continuous mapping, Bull. Fac. Sci. Assiut Univ. A 12 (1983), no. 1, 77–90.
- [2] A. Császár, Generalized open sets, Acta. Math. Hungar. 75 (1997), no. 1-2, 65-87.
- [3] _____, γ-compact spaces, Acta. Math. Hungar. 87 (2000), no. 1-2, 99–107.
- [4] _____, γ-connected sets, Acta. Math. Hungar. **101** (2003), no. 4, 273–279.
- [5] N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly 70 (1963), 36–41.
- [6] A. S. Mashhour, M. E. Abd El-Monsef, and S. N. El-Deeb, On precontinuous and weak precontinuous mappings, Proc. Math. and Phys. Soc. Egypt 53 (1982), 47–53.
- [7] O. Njästad, On some classes of nearly open sets, Pacific J. Math. 15 (1965), 961–970.
- [8] N. V. Velicko, *H-closed topological spaces*, Amer. Math. Soc. Transl. **78** (1968), 103–118.

DEPARTMENT OF MATHEMATICS KANGWON NATIONAL UNIVERSITY CHUNCHEON 200-701, KOREA *E-mail address:* wkmin@kangwon.ac.kr