• Title/Summary/Keyword: clamped-clamped beam

Search Result 213, Processing Time 0.034 seconds

Vibration Analysis of the Continuous Circular Cylindrical Shell with the Clamped-clamped Supports at Two End Edges (양단이 고정지지된 연속원통셸의 진동특성 해석)

  • 한창환;이영신
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.2
    • /
    • pp.97-107
    • /
    • 2002
  • The continuous circular cylindrical shells are widely used for the high performance structures of aircraft, spacecraft, missile, nuclear fuel rod shell and so on. In this paper, a method for the vibrational analysis of the continuous circular cylindrical shells with the clamped-clamped supports at two end edges is developed by using the modal expansion method. Forces and/or moments acting on the shell surface are expressed in terms of the Dirac Delta Function. Frequency equation of the continuous shell is also derided by the application of the equilibrium of forces and the continuity of displacements at the boundary. Natural frequencies of the continuous shell are calculated numerically with mathematica 3.0 and they are compared with FEM results from the ANSYS 5.3 to improve the reliability of analytic solutions. Mode shares obtained by the FEM are Presented in this paper.

Pyroeffects on Magneto-Electro-Elastic Sensor patch subjected to thermal load

  • Kondaiah, P.;Shankar, K.
    • Smart Structures and Systems
    • /
    • v.19 no.3
    • /
    • pp.299-307
    • /
    • 2017
  • The magneto-electro-elastic (MEE) material under thermal environment exhibits pyroelectric and pyromagnetic coefficients resulting in pyroelectric and pyromagnetic effects. The pyroelectric and pyromagnetic effects on the behavior of multiphase MEE sensors bonded on top surface of a mild steel beam under thermal environment is presented in this paper. The aim of the study is to find out how samples having different volume fractions of the multiphase MEE composite behave in sensor applications. This is studied at optimal location on the beam, where the maximum electric and magnetic potentials are induced due to pyroelectric and pyromagnetic effects under clamped-free and clamped-clamped boundary conditions. The sensor which is bonded on the top surface of the beam is modeled using 8-node brick element. The MEE sensor bonded on mild steel beam is subjected to uniform temperature rise of 50K. It is assumed that beam and sensor is perfectly bonded to each other. The maximum pyroelectric and pyromagnetic effects on electric and magnetic potentials are observed when volume fraction is ${\nu}_f=0.2$. The boundary conditions significantly influence the pyroelectric and pyromagnetic effects on electric and magnetic potentials.

Vibration and buckling analyses of FGM beam with edge crack: Finite element and multilayer perceptron methods

  • Murat Yaylaci;Ecren Uzun Yaylaci;Mehmet Emin Ozdemir;Sevval Ozturk;Hasan Sesli
    • Steel and Composite Structures
    • /
    • v.46 no.4
    • /
    • pp.565-575
    • /
    • 2023
  • This study represents a numerical research in vibration and buckling of functionally graded material (FGM) beam comprising edge crack by using finite element method (FEM) and multilayer perceptron (MLP). It is assumed that the material properties change only according to the exponential distributions along the beam thickness. FEM and MLP solutions of the natural frequencies and critical buckling load are obtained of the cracked FGM beam for clamped-free (C-F), hinged-hinged (H-H), and clamped-clamped (C-C) boundary conditions. Numerical results are obtained to show the effects of crack location (c/L), material properties (E2/E1), slenderness ratio (L/h) and end supports on the bending vibration and buckling properties of cracked FGM beam. The FEM analysis used in this paper was verified with the literature, and the fundamental frequency ratio ($\overline{P_{cr}}$) and critical buckling load ratio ($\overline{{\omega}}$) results obtained were compared with FEM and MLP. The results obtained are quite compatible with each other.

Stochastic Response of a Hinged-Clamped Beam (Hinged-clamped 보의 확률적 응답특성)

  • Cho, Duk-Sang
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.3 no.1
    • /
    • pp.43-51
    • /
    • 2000
  • The response statistics of a hinged-clamped beam under broad-band random excitation is investigated. The random excitation is applied at the nodal point of the second mode. By using Galerkin's method the governing equation is reduced to a system of nonautonomous nonlinear ordinary differential equations. A method based upon the Markov vector approach is used to generate a general first-order differential equation in the dynamic moment of response coordinates. By means of the Gaussian and non-Gaussian closure methods the dynamic moment equations for the random responses of the system are reduced to a system of autonomous ordinary differential equations. The case of two mode interaction is considered in order to compare it with the case of three mode interaction. The analytical results for two and three mode interactions are also compared with results obtained by Monte Carlo simulation.

  • PDF

Free Vibration Analysis of Curved Beams with Thin-Walled Cross-Section (두께가 얇은 단면을 갖는 곡선보의 자유진동 해석)

  • 이병구;박광규;오상진
    • Journal of KSNVE
    • /
    • v.9 no.6
    • /
    • pp.1193-1199
    • /
    • 1999
  • This paper deals with the free vibrations of circular curved beams with thin-walled cross-section. The differential equation for the coupled flexural-torsional vibrations of such beams with warping is solved numerically to obtain natural frequencies and mode shapes. The Runge-Kutta and determinant search methods, respectively, are used to solve the governing differential equation and to compute the eigenvalues. The lowest three natural frequencies and corresponding mode shapes are calculated for the thin-walled horizontally curved beams with hinged-hinged, hinged-clamped, and clamped-clamped end constraints. A wide range of opening angle of beam, warping parameter, and two different values of slenderness ratios are considered. Numerical results are compared with existing exact and numerical solutions by other methods.

  • PDF

Free Vibration Analysis of Horizontally Curved Beams with Variable Cross Sectional Width on Elastic Foundation (탄성지반 위에 놓인 단면폭이 변화하는 수평 곡선보의 자유진동 해석)

  • 이병구;박광규;오상진;이태은
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.10a
    • /
    • pp.29-36
    • /
    • 2003
  • This paper deals with the free vibration analysis of horizontally circular mea beams with variable cross sectional width on elastic foundations. Taking into account the effects of rotatory inertia and shear deformation differential equations governing the free vibrations of such beams are derived, in which the Whlkler foundation model is considered as the elastic foundation. The variable width of beam is chosen as the linear equation. The differential equations are solved numerically to calculate natural frequencies. In numerical examples, the curved beam with the hinged-hinged, hinged-clamped, clamped-hinged and damped-clamped end constraints are considered The parametric studies are conducted and the lowest four frequency parameters are reported in figures as the non-dimensional forms.

  • PDF

Free vibration analysis of clamped free circular cylindrical shells (일단고정-일단자유 원통 셸의 진동 해석)

  • 임정식
    • Journal of KSNVE
    • /
    • v.6 no.1
    • /
    • pp.45-56
    • /
    • 1996
  • Frequency equation for clamped-free circular cylindrical thin shell is derived by the application of Rayleigh-Ritz method using the Sanders shell equation. The cubic frequency equation is solved for each axial and circumferential mode number. Integration of the beam characteristic funcitions was performed via Mathematica which results in more accurate integration of the beam functions that affect the accuracy of the frequency. The natural frequencies from this calculation are compared with existing results. It shows that this calculation predicts natural frequencies closer to the test results than existing results.

  • PDF

Free Vibrations and Buckling Loads of Tapered Beam-Columns of Regular Polygon Cross-section with Constant Volume (일정체적의 정다각형 단면을 갖는 변단면 보-기둥의 자유진동 및 좌굴하중)

  • Lee, Byong Koo
    • Journal of KSNVE
    • /
    • v.6 no.5
    • /
    • pp.587-594
    • /
    • 1996
  • The differential equation governing both the free vibrations and buckling loads of tapered beam-columns of regular polygon cross-section with constant volume were derived and solved numerically. The parabolic and sinusoidl tapers were chosen as the variable depth of cross-section for the tapered beam-column. In numerical examples, the clamped-clamped, hinged-clamped and hinged-hinged end constraints were considered. The variations of frequency parameters and first buckling load parameters with the non-dimensional system parameters are reported in figures, and typical vibrating mode shapes are presented. Also, the configurations of strongest columns were determined.

  • PDF

Free Vibrations and Buckling Loads of Tapered Beam-Columns of Circular Cross-Section with Constant Volume (일정체적 원형 변단면 보-기둥의 자유진동 및 좌굴하중)

  • 이병구
    • Computational Structural Engineering
    • /
    • v.9 no.3
    • /
    • pp.135-143
    • /
    • 1996
  • The differential equations governing both the free vibrations and buckling loads of tapered beam-columns of circular cross-section with constant volume are derived and solved numerically. The effects of axial load are included in the differential equations. The parabolic equation is chosen as the variable radius of circular cross-section for the tapered beam-column. In numerical examples, the clamped-clamped, clamped-hinged and hinged-hinged end constraints are considered. The variations of the frequency parameters and buckling load parameters with the non-dimensional system parameters are presented in figures and the configurations of strongest columns are obtained.

  • PDF

Vibration Characteristics of Pipe Element Containing Moving Medium by a Transfer Matrix (전달행렬을 이용한 유동매체를 가진 배관요소의 진동특성 분석)

  • 이영신;천일환
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.1
    • /
    • pp.366-375
    • /
    • 1991
  • In this study, vibrational behavior of uniform pipe carrying a moving medium is studied by using a transfer matrix and the displacement function derived from the conventional beam theory. In various boundary conditions, flow velocity and mechanical property change of the variation of natural frequency are investigated. The Coriolis term in the original differential equation of motion has been ignored in the investigation. This method is used to study the variation of natural frequency with flow velocity for clamped-clamped, cantilevered, clamped-pinned, pinned-pinned, free-free straight pipe element. It is shown that clamped-clamped, free-free pipe have the highest natural frequency and critical velocity values while cantilevered pipe have the smallest natural frequency for the same mechanical properties. From the vibration effects of mechanical property variation, it is shown that bending stiffness and pipe length variation has large influence on natural frequency and critical velocity. Since the order of transfer matrix is not changed with boundary conditions of pipe element, this method proposed can be easily applied to personal-computer for vibration analysis of pipe element. Furthermore, this method can be extended to three-dimensional system by using a coordinate transformation for the analysis of piping systems.