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Free Vibrations and Buckling Loads of Tapered Beam-Columns of

Regular Polygon Cross-Section with Constant Volume
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ABSTRACT

The differential equations governing both the free vibrations and buckling loads of tapered
beam-columns of regular polygon cross-section with constant volume were derived and solved numeri-
cally. The parabolic and sinusoidal tapers were chosen as the variable depth of cross-section for the
tapered beam-column. In numerical examples, the clamped-clamped, hinged-clamped and hinged-hinged
end constraints were considered. The variations of frequency parameters and first buckling load
parameters with the non-dimensional system parameters are reported in figures, and typical vibrating
mode shapes are presented. Also, the configurations of strongest columns were determined.
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1. Introduction

Since beam-columns are basic structural forms,
their statics and dynamics have been studied exten-
sively. Many investigators have been concerned with

the mechanical behavior of beam-columns with con-
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stant volume past three decades‘’.

References®'® and their citations include the
governing equations and the significant historical
literature on this subject. Niordson®, and Kamat
and Simites® studied on the optimal shape of beam-
column which has the largest first natural frequency.
The effects of shear deformation and rotary inertia
on optimum beam frequencies had been studied by
Kamat and Simites'.

Keller®, Tadjbakhsh and Keller®, and Taylor®
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researched on the shape of strongest columns and its
buckling loads. Keller and Niordson® studied on the
tallest columns. The optimal structural design under
multiple eigenvalue constraints had been investigat-
ed by Masur®. Wilson, et al."” conducted the stabil-
ity experiments of strongest column.

Recent theories predict the optimal shapes for
both the largest natural frequencies and highest
axial loads of the columns. Although many numeri-
cal results were presented in the open literature, the
configurations of columns were very limited in the
various aspects. For examples, the circular cross-
section as shapes of cross-section, the linear taper
column as variable depths of cross-section, the
hinged-hinged end as end constraints, only the first
frequencies, not higher frequencies, in free vibration
problems were considered in most previous works.
Also, the analysis of the free vibrations and buckling
loads problems were not conducted in combination,
namely conducted separately.

Therefore, the main purpose of the present paper
is to investigate both free vibrations and buckling
loads of tapered beam-columns of regular polygon
cross-section with constant volume. The differential
equation is derived for the free vibration of linearly
elastic beam-column. The effect of axial load is
included. Also, the differential equation governing
the buckled shape of beam-column is derived by
using the equation for free vibration.

The governing equations were solved numerically
by the Heun’s method"® and determinant search
method combined with Regula-Falsi method"®. The
parabolic and sinusoidal tapers were chosen as the
tapered beam-column with variable cross-sectional
depth. In numerical examples, the clamped-clamped,
hinged-clamped and hinged-hinged end constraints
were considered. The three lowest natural fre-
quencies and buckling loads are presented as func-
tions of non-dimensional system parameters. Also,
the section ratios and buckling load parameters of
the strongest columns are reported.

2. Beam-Column with Constant Volume

Shown in Fig. 1(a) depicts a tapered beam-column
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Fig. 1 Beam-column with constant volume and vari-
able cross-sectional depth

with span length / and constant volume V. The
beam-column’s cross-sectional shape is the regular
polygon cross-section and its cross-sectional depth,
which is varied with the co-ordinate x, is expressed
as 4. Therefore, the objective beam-columns have
the variable area and variable moment of inertia of
cross-section expressed as A and /, respectively.
The variation of depth h with x is defined in Fig.
1(b). The depths of both ends(x =0 and /) and mid-
span(x=1//2) are i, and /},, respectively. Here, «
non-dimensional parameter defined as section ratio
n is introduced as follows.

n="ln/ho 1)

The cross-sectional properties A and [/ of regular
polygon cross-section with depth h are, respectively,

A=msin(z/m)cos{x/m) I’ (2)
1 =msin(x/m)cos®(x/m)
[1+tan®(x/m) /31 /4 (3)

where m is integer number of sides of polygon. It is
clear that A and 7 with infinite number ;, namely
circular cross-section, are converged to /% and xh*/
4, respectively. Also, it is noted that every centroidal
axis of regular polygon cross-section is a principal
axis and has the same moment of inertia expressed
in equation (3).

Now, define the variable cross-sectional depth /7
shown in Fig. 1(a) and 1(b). In this study, the para-
bolic and sinusoidal tapers are chosen for the beam-
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columns with variable depth 4. For the parabolic
taper, the function of variable depth /; through three
points of (0, &), (//2, nhy) and (/, /) in rectangular
co-ordinates (x,/) is determined as follows.

h=h —dalx/D*+4a(x/+1], 0sx</!
(4.1)

where,
a=n—1 (4.2)

The volume 1V of parabolic taper can now be
calculated by using equations (2) and (4.1). The result
is

14
v— [ Adx
=msin(x/m)cos (x/m) H5!3 (5.1)
where,
B=8n*+4n+3)/15 (5.2)

For sinusoidal taper, the function of variable
depth / and volume V are determined:

h=hlasin(mx/1)+1], 0<x</ (6)
in which ¢ is equal to equation (4.2).

V =msin(z/m)cos (x/m) 158 (7.1)
where,

B=d/2+4a/7+1 (7.2)
3. Governing Equations

Figure 2 shows the typical vibrating mode shape
of the beam-column subjected to axial load P in
which compressive load is positive. Both ends of
beam-column are supported by clamped or hinged
ends. The beam-column is assumed to be in har-
monic motion, or the dynamic displacement W(x, ¢)
is proportional to sin{w¢) and w(x), where @ is the

N hinged/clamped
W(x )=w(x)sin(ct) :

Fig. 2 Typical mode shape of beam-column with an
axial load

frequency, ¢ is time and w(x) is the amplitude which
is function of x only. The harmonic motion is then

W (x, ) =W (x)sin(wt) 8

The partial differential equation governing free
vibration of beam-column in which the effect of
axial load is included, given in reference!'V, is

az[ FW (x, t)] FW (x, 1)
o | Bl g [t eAT 5
0 W(r £
+ P~ sz =0 9

where F is Young’s modulus and p is mass density.
Since A and / are function of x only, the equation (9)
is developed as follows.

n 441 ,,77”/(’5 t) dil
El- ox* +2 dx ox’® +<E dx? +P>
PWx, 1) FW ik, t)

T AT =0 (10)

Now, substituting each of W (x,#)/0t% 0*W(x,t)/
ox®, FPWlx,t)/ox* and 3*Wi(x,t)/ox* obtained from
equation (8) into equation (10) gives the ordinary
differential equation governing free vibration of
tapered beam-column with axial load P. The result
is

d*wx) dl d*w(x) d*l
2 dx* +2de d? +<Ed 2+P>
2 0
Lé}’c(g—’X)kpszw(x)zo (11

At hinged and clamped ends, the boundary condi-
tions are

w=0 at hinged end(x=0 or /) (12.1)
w”=0 at hinged end(x =0 or /) (12.2)
w=0 at clamped end(x =0 or /) (13.1)
w’'=0 at clamped end (x=0 or /) (13.2)

where equations (12.2) and (13.2) assure that the
bending moment and rotation are zero, respectively.

To facilitate the numerical studies and to obtain
the most general results for this class of problem,
the following non-dimensional system variables are

introduced:
E=x/1 (14)
p=uw/! (15)
p=PI*/ (r°EL) (16)
Sh=EAZREF eS| X/4 6@ A 53E, 1996 3/589
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C,':(I)[lzv pAe; (E[e) 5 l.:192y3y tt (17)

in which £ and 5 are normalized by span length /, p
is load parameter and ¢, is frequency parameter.
The subscript 7 of equation (17) is mode number. Also,
A. and [, are the area and moment of inertia of
cross-section, respectively, of a uniform beam-
column with circular cross-section whose volume is
V. Such A, and [, are determined easily as follows.

Ae=V/I (18)
L=(V/2D)?*n (19)

When equation (2) and each of d7/dx and d%]/dx?
obtained by differentiating equation (3) are substitut-
ed into equation (11) and the non-dimensional forms
of equations (14)~(17) are used, the result is

4 3 dZ
Ch=aldt @t apn G racn Q)

For parabolic tapers, the coefficients ¢, through a4
in equation (20) are

a=3202-1)/j (21.1)

ar=—32a(28a&*—28aé+6a—1) //* (21.2)
__ 3mmtan{(x/m) 5% 1

B= T T3 tan(n/m) | j° (21.3)
_ 3mtan(z/m)B 1

G 3 tani(a/m) ] 72 @219

where,
j=—4af*+4af+1 (21.5)

And for sinusoidal tapers, the coefficients g,
through «, in equation (20) are

a= —8racos (7&) [} (22.1)
a=4r*al —3acos® (7€) /j+sin(x€)]/; (22.2)
e — Jrmtan(x/m) 3* 1 (22.3)

[3+tan’(x/m)] /*

_ 3mtan(x/m)B8 1
BB+ tan (n/m) | 2

(22.4)

where,
j=asin(x&) +1 (22.5)

The non-dimensional forms of boundary condi-
tions (12.1)~(13.2) are obtained by using equations
(14) and (15):

7=0 at hinged end(£=0 or 1) (23.1)
7" =0 at hinged end(£=0 or 1) (23.2)
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7=0 at clamped end(£=0 or 1) (24.1)
7"=0 at clamped end(&£=0 or 1) (24.2)

The frequencies decrease as the compressive loads

P increase and then, the frequencies vanish when the

compressive loads P coincide with the buckling

loads. Thus, substituting ¢,=0 and p= b, into equa-

tion (20) gives the differential equation governing the
buckled shapes of beam-column. The result is

G2-n

2
+ (gt asbi)fi—g (25)

in which 5, is buckling load parameter defined as
bi:Bilz/(ﬂ'zEIe), Z.:LZ,B» (26)

where B; is buckling load and ; is mode number.
4. Numerical Methods

Based on above analysis, two FORTRAN com-
puter programs were written to calculate frequency
parameters ¢, and mode shapes 7= 7(£), and buckl-
ing load parameters b, for given geometries of
beam-columns. The Heun’s method"? was used to
integrate the differential equations and then, the
determinant search method combined with the
Regula-Falsi method? was used to determine both
eigenvalues of ¢, and b,. For the sake of complete-
ness, the numerical methods were summarized as
follows. The first is the free vibration problem.

(1) Specify the beam-column geometry(end con-
straint, m, » and p) and set of two homogeneous
boundary conditions which are either equations (23.
1) and (23.2) or (24.1) and (24.2)

(2) Consider fourth order system, equation (20), as
two initial value problems whose initial values are
the two homogeneous boundary conditions £=0, as
chosen in step (1). Then, assume a trial frequency
parameter ¢, in which the first trial value is zero.

(3) Using Heun’s method, integrate equaton (20)
from £=0 to 1. Perform two separate integrations,
one for each of the two boundary conditions.

(4) From the Heun’s solution, evaluate at £=1 the
determinant D of coefficient matrix for the bound-
ary conditions of equations (23.1) and (23.2) or (24.1)
and (24.2). If D=0, then the trial value of ¢; is an
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eigenvalue. If not, then increment ¢; and repeat the
above calculations.

(5) In each iteration, note the sign of D. If D
changes sign between two consecutive trials, then
the eigenvalue lies between these last trial values of
Cr

(6) Use the Regula-Falsi method to compute the
advanced trial ¢; based on its two previous values.

(7) Terminate the calculations and print the value
of ¢, and the corresponding mode shape 7 when the
convergency criteria are met.

The second is the buckling load problem. Same
procedure mentioned above was used for a given
beam-column geometry(end constraint, m and »).
And it is clear that the eigenvalue in equation (25) is
the buckling load parameter ;. In numerical exam-
ples, the lowest three frequency parameters ¢;(i=1,2,
3) and only the first buckling load parameters 4, are
calculated.

5. Numerical Examples and Discussions

The first series of numerical studies are shown in
Table 1. These studies served to validate the analy-
sis presented herein. Table 1 shows that the numeri-

Table 1 Comparison of results between references and
this study
® Free vibration problem

Geometry* | Data source ) C2 C3
n=12 SAP9Y0 16.19 53.56 114.2
p=0 this study 16.19 53.41 112.8
n=2.0 SAP90 14.13 48.23 106.2
p=0 this study 14.13 I 47.89 105.4

*m=3, parabolic taper, hinged-hinged end
® Buckling load problem

Geometry* | Data source | Ref. value | This study
n=1 Ref.[13] b=1.0 b=1.0
B1=550 lbs | B,=553 lbs
=2.32%* Ref.[10
" 00 o Ny | aso N

*Circular cross-section, sinusoidal taper,

hinged-hinged end
**V=97/16in*(2.896 x 107° m%, /=15.44 in(0.3922 ),
E=10x10° psi(6.895 x 10'° Pa)

cal results of this study quite agree with the refer-
ence values.

It is shown in Fig. 3, for which parabolic taper,
hinged-hinged end, and p=0, that all of the frequency
parameters reach a peak as the section ratio » is

‘increased. Further, as the integer numbers s of sides

of polygon cross-section increase from m=>3(triangu-
lar cross-section) to m=4(rectangular cross-section)
to m=oofcircular cross-section), each value of ¢,
decreases, other parameters remaining constant.

It is shown in Fig. 4, for which s =4, sinusoidal

150
7 parabolic taper, hinged-hinged end, p=0.
] : triangular cross-section(m=3)
4 ------:rectangular cross-section(m=4)
120~ o - circular cross-section(m=co)

frequency parameter, c;

O o e e o S —

0 1 2 3 4 5
section ratio, n

Fig. 3 ¢, versus » curves by side number m

1 rectangular cross-section(m=4)
1 sinusoidal taper, p=0.

E : clamped-clamped end
1 --- : hinged-clamped end
1504 . hinged-hinged end

frequency parameter, ¢

o4+
0 1 2 3 4 5
section ratio, n
Fig. 4 ¢, versus » curves by end constraints

ZASANESEEX /A6 A53E, 19963/591

o



Byoung Koo Lee - Jeong Man Mo

taper, and p=0, that several of the frequency param-
eters reach a peak as the section ratio » is increased.
Also, as the end constraints increase from hinged-
hinged to hinged-clamped to clamped-clamped, each
value of ¢; increases, other parameters remaining
constant.

It is shown in Fig. 5, for wich m=o0c, clamped-
clamped end, and p=0, that the two ¢, versus »
curves between parabolic and sinusoidal tapers are
compared. Since two curves are very close each

180
7 circular cross-section(m=co)
4 clamped-clamped end, p=0.
150 : parabolic taper

rrrrrrrrrr . sinusoidal taper

-
N
(=]

frequency parameter, ¢;
©
o

S A N S N

60
30
o+
0 1 2 3 4 5
section ratio, n
Fig. 5 ¢, versus » curves by tapers
150

parabolic taper

] hinged-hinged end, n=1.25

3 : trianglular cross-section(m=3)
1204 e : circular cross-section(m=cc)

] [7J: buckling load parameters

i=3

frequency parameter, C;

load parameter, p

Fig. 6 ¢, versus p curves for m=3 and circular cross-
section
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other, the effect of tapers on frequencies are negli-
gible, other parameters remaining constant.

It is shown in Fig. 6, for which parabolic taper,
hinged-hinged end, and »=1.25, that the frequency
parameters decrease, as the load parameter is in-
creased. It is clear that p values of horizontal axis
met with ¢; versus p curves for ;=1 are the first
buckling load parameters for given geometries.
After buckling due to the first buckling load, the
second and third natural frequencies are meaning-

triangular cross-section(m=3)
parabolic taper, clamped-clamped end, p=0.
———:n=0.8(c4=27.7, c,=71.7, c3=137.)

1 n=1.2(c4=22.3, c,=64.5, ¢3=129.)

e P

Fig. 7 Example of mode shapes

parabolic taper
clamped-clamped end

buckling load parameter, b,

: []: strongest columns
m=3: (0.84,4.929)
m=4: (0.84,4.269)
m=5: (0.84,4.145)
1 =co: (0.84,4.076)
(S S B A L B R LA

o] 1 2 3 4 5
section ratio, n

Fig. 8 5, versus n curves of parabolic taper for
clamped-clamped end
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less.
Shown in Fig. 7 are the predicted frequency

parameters ¢,(i=1,2,3) and their corresponding mode
shapes for both #=0.8 and 1.2 for which m=3,
parabolic taper, clamped-clamped end, and p=0. It is
seen that there are differences between two mode
shapes in nodal points and amplitudes.

Shown in Figs. 8 9 and 10 are the variations of
first buckling load parameter 4, with section ratio »
of clamped-clamped, hinged-clamped and hinged-

w

| parabolic taper
hinged-clamped end

- '/,/B\\\
o S
% 2 /&\\Q \\\ N
£ S
g \\\\\\ m=3
A ~
\\ -
O N T
g y
m ]
£ 1 20
=
] []: strongest columns
o m=3; (1.16,2.497)
m=4: (1.16,2.162)
m=5: (1.16,2.100)
E m=oc; (1.16,2.065)
O T 1 17T I T T T T l LA S | T I T T LU | T T T T
0 1 2 3 4 5

section ratio, n

Fig. 9 b, versus u curves of parabolic taper for hinged-
clamped end

20
1 parabolic taper
1 hinged-hinged end

[ strongest columns
0.5 m=3: (1.88.,1.573)
m=4: (1.98,1.363)
m=5: (1.98,1.323)
m=cc; (1.98,1.301)

buckling load parameter, b,

U S |

0.0+
0 1 2 3 4 5

section ratio, n

Fig. 10 5, versus » curves of parabolic taper for hinged-

hinged end

hinged ends, respectively, for parabolic taper. All of
buckling load parameters of 4, reach a peak, as the
section ratio » is increased. The peak point of each
curve marked [] represents the strongest column
which shows the largest buckling load parameter.
For example in Fig. 8, the buckling load parameter
and section ratio of strongest columns for s =3(tri-
angular cross-section), parabolic taper, and
clamped-clamped end are 4.929 and 0.84, respective-
ly, as shown in the legend. It is found that the section

Table 2 Configuration of strongest beam-columns for
parabolic taper

End constraint m ! n b
3 0.84 4.929
Clamped- 4 0.84 4.269
Clamped 5 0.84 4.145
co* 0.84 4.076
3 1.16 2.497
Hinged- 4 1.16 2.162
Clamped 5 1.16 2.100
o0 1.16 2.065
3 1.98 1.573
Hinged- 4 1.98 1.363
Hinged 5 1.98 1.323
o | 1.98 1.301

*co ; Circular cross-section

6
] clamped-clamped end
. parabolic taper
T . sinusoidal taper
i -
4 RN

buckling load parameter, b,

R R R e e s —

] 1 2 3 4 5
section ratio, n

Fig. 11 p, versus » curves of clamped-clamped end by
tapers
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ratios of strongest columns are same regardless of
number m of sides of polygon cross-section, taper
and end constraint remaining constant. The section
ratios and first buckling load parameters of the
strongest columns for the parabolic taper are sum-
marized in Table 2.

The effects of taper on first buckling load parame-
ter for clamped-clamped end are presented in Fig. 11.
The solid(parabolic taper) and dashed(sinusoidal
taper) curves are very close each other so that the
taper effect is negligible.

6. Conclusions

The numerical methods developed herein for
computing frequencies and buckling loads of beam-
columns with constant volume were found to be
especially robust and reliable over a wide and practi-
cal range of system parameters. Both differential
equations governing free vibrations and buckling
loads of the beam-columns were derived. The para-
bolic and sinusoidal tapers with regular polygon
cross-sections were chosen as the variable taper.
The equations were solved numerically using Heun’s
method and determinant search method for numer-
ical integrations and calculating the eigenvalues,
respectively.

In numerical examples, the clamped-clamped,
hinged-clamped and hinged-hinged end constraints
were considered. As the numerical results, the varia-
tions of frequency parameters with section ratio and
load parameter are reported, and typical mode
shapes are presented. Also, the variations of first
buckling load parameters with section ratios are
presented, and the configuration of strongest beam-
columns were determined.
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