• 제목/요약/키워드: circuit-level model

검색결과 167건 처리시간 0.023초

클럭 게이팅 구동신호 기반 상위수준 전력모델의 전력 상태 수 감소 (Reduction of the Number of Power States for High-level Power Models based on Clock Gating Enable Signals)

  • 최호석;이준환
    • 전자공학회논문지
    • /
    • 제52권9호
    • /
    • pp.28-35
    • /
    • 2015
  • 본 논문은 클럭 게이팅 구동신호를 이용한 전력 모델링 방법에서 회로에서 나타나지 않는 잉여 전력 상태를 확인함으로써 전력 상태 수를 줄이는 방법을 제안한다. 회로에 나타나지 않는 전력 상태를 확인하기 위해 함수적 종속성과 구조적 종속성을 확인한다. 본 논문에서는 2개의 클럭 게이팅 구동신호 간에 나타나는 함수적 종속성 중 동치 관계, 역관계, 포함 관계만을 다룬다. 구조적 종속성은 클럭 게이팅 셀의 위치적 특성에 의한 종속성을 의미한다. 두 종속성으로 발견한 관계를 이용해 전력상태의 수를 줄였으며, 감소 후 남은 전력 상태수를 세기위해 이진결정다이어그램을 사용하였다. 함수적 종속성과 구조적 종속성을 이용해 전력 상태 수를 알고리즘 적용 전 대비 평균 59%까지 감소시켰다.

이동통신을 위한 FSK동기 및 변복조기술에 관한 연구 I부. FSK 복조를 위한 Quadrature Detector 설계 (A Study on the FSK Synchronization and MODEM Techniques for Mobile Communication Part I :Design of Quadrature Detector for FSK Demodulation.)

  • 김기윤;최형진
    • 대한전자공학회논문지TC
    • /
    • 제37권3호
    • /
    • pp.1-8
    • /
    • 2000
  • 본 논문에서는 현재 이동통신 시스템의 한 형태로 단말기의 하드웨어 구현이 간단하고 IC제작이 경제적 이어서 무선호출시스템 등에 많이 사용되고 있는 FSK 신호 복조를 위한 Quadrature Detector의 디지털 시뮬레이션 모델을 구현하였다. Quadrature Detector는 아날로그 소자로서 입력신호의 주파수에 따라 다른 위상 변화값이 비선형적으로 출력되어 지금까지 시뮬레이션을 통한 정확한 시스템 특성 분석이 어려웠었다. 이에 본 논문에서는 Quadrature Detector를 이용한 FSK 신호의 복조과정을 전개하고 디지털 시뮬레이션 을 수행하여 최적 성능을 도출하였다. 먼저 Quadrature Detector의 시뮬레이션을 위해 RLC 탱크회로 (Tank Circuit)로 구성된 PSN(Phase Shift Network)의 아날로그 전달함수를 First Order Hold 이론을 이용하여 디지털 전달함수로의 등가변환을 유도하였다. 또한 4FSK신호에 대한 Quadrature Detector의 복조신호 출력 형태가 4-level 신호인데, 이를 2개의 비교기(Comparator)만을 사용할 경우 최적 성능을 얻기 위한 임계레벨 결정과 동작 파라메터 Q값 설정방법을 제안하였으며 BER 분석을 통해 검증하였다

  • PDF

Optimal Design of a Novel Permanent Magnetic Actuator using Evolutionary Strategy Algorithm and Kriging Meta-model

  • Hong, Seung-Ki;Ro, Jong-Suk;Jung, Hyun-Kyo
    • Journal of Electrical Engineering and Technology
    • /
    • 제9권2호
    • /
    • pp.471-477
    • /
    • 2014
  • The novel permanent magnetic actuator (PMA) and its optimal design method were proposed in this paper. The proposed PMA is referred to as the separated permanent magnetic actuator (SPMA) and significantly superior in terms of its cost and performance level over a conventional PMA. The proposed optimal design method uses the evolutionary strategy algorithm (ESA), the kriging meta-model (KMM), and the multi-step optimization. The KMM can compensate the slow convergence of the ESA. The proposed multi-step optimization process, which separates the independent variables, can decrease time and increase the reliability for the optimal design result. Briefly, the optimization time and the poor reliability of the optimum are mitigated by the proposed optimization method.

Implementation of Multilevel Boost DC-Link Cascade based Reversing Voltage Inverter for Low THD Operation

  • Rao, S. Nagaraja;Kumar, D.V. Ashok;Babu, Ch. Sai
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권4호
    • /
    • pp.1528-1538
    • /
    • 2018
  • In this paper, configuration of $1-{\phi}$ seven-level boost DC-link cascade based reversing voltage multilevel inverter (BDCLCRV MLI) is proposed for uninterrupted power supply (UPS) applications. It consists of three level boost converter, level generation unit and full bridge circuit for polarity generation. When compared with conventional boost cascaded H-bridge MLI configurations, the proposed system results in reduction of DC sources, reduced power switches and gate drive requirements. Inverter switching is accomplished by providing appropriate switching angles that is generated by any optimization switching angle techniques. Here, round modulation control (RMC) method is taken as the optimization method and switching angles are derived and the same is compared with various switching angles methods i.e., equal-phase (EP) method, and half-equal-phase (HEP) method which results in improved quality of obtained AC power with lowest total harmonic distortion (THD). Reduction in DC sources and switch count makes the system more cost effective. A simulation and prototype model of $1-{\phi}$ seven-level BDCLCRV MLI system is developed and its performance is analyzed for various operating conditions.

Three-phase Three-level Boost-type Front-end PFC Rectifier for Improving Power Quality at Input AC Mains of Telecom Loads

  • Saravana, Prakash P.;Kalpana, R.;Singh, Bhim
    • Journal of Power Electronics
    • /
    • 제18권6호
    • /
    • pp.1819-1829
    • /
    • 2018
  • A three-phase, three-switch, and three-level boost-type PWM rectifier (Vienna rectifier) is proposed as an active front-end power factor correction (PFC) rectifier for telecom loads. The proposed active front-end PFC rectifier system is modeled by the switching cycle average model. The relation between duty ratios and DC link capacitor voltages is derived in terms of the system input currents. Furthermore, the feasible switching states are identified and applied to the proposed system to reduce the switching stress and DC ripples. A detailed equivalent circuit analysis of the proposed front-end PFC rectifier is conducted, and its performance is verified through simulations in MATLAB. Simulation results are verified using an experimental setup of an active front-end PFC rectifier that was developed in the laboratory. Simulation and experimental results demonstrate the improved power quality parameters that are in accordance with the IEEE and IEC standards.

Evaluation Methods and Design for Bioartificial Liver Based on Perfusion Model

  • Park Yueng Guen;Ryu Hwa-Won
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제10권1호
    • /
    • pp.9-15
    • /
    • 2005
  • A bioartificial liver (BAL) is a medical device entrapping living hepatocytes or immortalized cells derived from hepatocytes. Many efforts have already been made to maintain the functions of the hepatocytes in a BAL device over a long term. However, there is still some uncertainty as to their efficacy. and their limitations are unclear. Therefore, it is important to quantitatively evaluate the metabolic functions of a BAL. In previous studies on in vitro BAL devices, two test methods, an initial bolus loading and constant-rate infusion plus initial bolus loading, were theoretically carried out to obtain physiologic data on drugs. However, in the current study, the same two methods were used as a perfusion model and derived the same clearance characterized by an interrelationship between the perfusate flow rate and intrinsic clearance. The interrelationship indicated that the CL increased with an increasing perfusate flow rate and approached its maximum value, i.e. intrinsic clearance. In addition, to set up an in vivo BAL system, the toxic plateau levels in the BAL system were calculated for both series and parallel circuit models. The series model had a lower plateau level than the parellel model. The difference in the toxic plateau levels between the parallel and series models increased with an increasing number of BAL cartridges.

Abnormal Astrocytosis in the Basal Ganglia Pathway of Git1-/- Mice

  • Lim, Soo-Yeon;Mah, Won
    • Molecules and Cells
    • /
    • 제38권6호
    • /
    • pp.540-547
    • /
    • 2015
  • Attention deficit/hyperactivity disorder (ADHD) is one of the most common neurodevelopmental disorders, affecting approximately 5% of children. However, the neural mechanisms underlying its development and treatment are yet to be elucidated. In this study, we report that an ADHD mouse model, which harbors a deletion in the Git1 locus, exhibits severe astrocytosis in the globus pallidus (GP) and thalamic reticular nucleus (TRN), which send modulatory GABAergic inputs to the thalamus. A moderate level of astrocytosis was displayed in other regions of the basal ganglia pathway, including the ventrobasal thalamus and cortex, but not in other brain regions, such as the caudate putamen, basolateral amygdala, and hippocampal CA1. This basal ganglia circuit-selective astrocytosis was detected in both in adult (2-3 months old) and juvenile (4 weeks old) $Git1^{\check{s}/\check{s}}$ mice, suggesting a developmental origin. Astrocytes play an active role in the developing synaptic circuit; therefore, we performed an immunohistochemical analysis of synaptic markers. We detected increased and decreased levels of GABA and parvalbumin (PV), respectively, in the GP. This suggests that astrocytosis may alter synaptic transmission in the basal ganglia. Intriguingly, increased GABA expression colocalized with the astrocyte marker, GFAP, indicative of an astrocytic origin. Collectively, these results suggest that defects in basal ganglia circuitry, leading to impaired inhibitory modulation of the thalamus, are neural correlates for the ADHD-associated behavioral manifestations in $Git1^{\check{s}/\check{s}}$ mice.

Magnetic Design of Flyback Type Snubber for IGCT Applications

  • Shirmohammadi, Siamak;Lama, Amreena;Suh, Yongsug
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2016년도 전력전자학술대회 논문집
    • /
    • pp.367-368
    • /
    • 2016
  • 10kV IGCT has been recently developed and has the potential to push wind turbine systems to higher power and voltage rating. Converters employing IGCTs need snubber and OVP circuit to limit the rate of current's rising and peak over voltage across IGCT during turn on and off state, respectively. The conventional RCD snubber which is used in such power converter dissipates a significant amount of power. In order to reduce the amount of energy lost by conventional RCD snubber, this paper proposes flyback type snubber comprising two coils wound on a magnetic core. The flyback snubber not only meets all of the IGCTs characteristics during on and off-state but also significantly saves the power loss. Modern magnetic model using permeance-capacitance analogy leads to more accurate loss analysis of flyback type di/dt snubber circuit in 3-level NPC type back-to-back VSC. In turns, the comparison between conventional and flyback type snubber yield the effectiveness of proposed snubber in wind turbine systems.

  • PDF

연속적인 최대-최소 연결비율 문제: 회선망에서의 공정성 및 효율성을 보장하는 경로설정 (Successive Max-min Connection-Ratio Preoblem:Routing with Fairness and Efficiency in Circuit Telecommunication Networks)

  • 박구현;우재현
    • 한국경영과학회지
    • /
    • 제22권2호
    • /
    • pp.13-29
    • /
    • 1997
  • This paper considers a new routing problem, successive max-min connection ratio problem (SMCRP), arised in circuit telecommunication networks such as SONET and WDM optical transport network. An optimization model for SMCRP is established based on link-flow formulation. It's first optimization process is an integral version of maximum concurrent flow problem. Integer condition does not give the same connection-ratio of each node-pair at an optimal solution any more. It is also an integral multi-commodity flow problem with fairness restriction. In order to guarantee fairness to every node-pair the minimum of connection ratios to demand is maximized. NP- hardness of SMCRP is proved and a heuristic algorithm with polynomial-time bound is developed for the problem. Augmenting path and rerouting flow are used for the algorithm. The heuristic algorithm is implemented and tested for networks of different sizes. The results are compared with those given by GAMS/OSL, a popular commercial solver for integer programming problem.n among ferrite-pearlite matrix, the increase in spheroidal ratio with increasing fatigue limitation, 90% had the highest, 14.3% increasing more then 70%, distribution range of fatigue.ife was small in same stress level. (2) $\sqrt{area}_{max}$ of graphite can be used to predict fatigue limit of Ductile Cast Iron. The Statistical distribution of extreme values of $\sqrt{area}_{max}$ may be used as a guideline for the control of inclusion size in the steelmaking.

  • PDF

유한요소해석을 통한 전자기 성형장비 공정변수의 성형력에 미치는 영향 (Effect of Process Parameters in Electromagnetic Forming Apparatus on Forming Load by FEM)

  • 노학곤;박형규;송우진;강범수;김정
    • 한국정밀공학회지
    • /
    • 제30권7호
    • /
    • pp.733-740
    • /
    • 2013
  • The high-velocity electromagnetic forming (EMF) process is based on the Lorentz force and the energy of the magnetic field. The advantages of EMF include improved formability, wrinkle reduction, and non-contact forming. In this study, numerical simulations were conducted to determine the practical parameters for the EMF process. A 2-D axis-symmetric electromagnetic model was used, based on a spiral-type forming coil. In the numerical simulation, an RLC circuit was coupled to the spiral coil to measure various design parameters, such as the system input current and the electromagnetic force. The simulation results show that even though the input peak current levels were at the same level in each case, the forming condition varied due to differences in the frequency of the input current. Thus, the electromagnetic forming force was affected by the input current frequency, which in turn, determined the magnitude of the current density and the magnetic flux density.