Browse > Article
http://dx.doi.org/10.14348/molcells.2015.0041

Abnormal Astrocytosis in the Basal Ganglia Pathway of Git1-/- Mice  

Lim, Soo-Yeon (Department of Anatomy and Neurobiology, School of Dentistry, Kyungpook National University)
Mah, Won (Department of Anatomy and Neurobiology, School of Dentistry, Kyungpook National University)
Abstract
Attention deficit/hyperactivity disorder (ADHD) is one of the most common neurodevelopmental disorders, affecting approximately 5% of children. However, the neural mechanisms underlying its development and treatment are yet to be elucidated. In this study, we report that an ADHD mouse model, which harbors a deletion in the Git1 locus, exhibits severe astrocytosis in the globus pallidus (GP) and thalamic reticular nucleus (TRN), which send modulatory GABAergic inputs to the thalamus. A moderate level of astrocytosis was displayed in other regions of the basal ganglia pathway, including the ventrobasal thalamus and cortex, but not in other brain regions, such as the caudate putamen, basolateral amygdala, and hippocampal CA1. This basal ganglia circuit-selective astrocytosis was detected in both in adult (2-3 months old) and juvenile (4 weeks old) $Git1^{\check{s}/\check{s}}$ mice, suggesting a developmental origin. Astrocytes play an active role in the developing synaptic circuit; therefore, we performed an immunohistochemical analysis of synaptic markers. We detected increased and decreased levels of GABA and parvalbumin (PV), respectively, in the GP. This suggests that astrocytosis may alter synaptic transmission in the basal ganglia. Intriguingly, increased GABA expression colocalized with the astrocyte marker, GFAP, indicative of an astrocytic origin. Collectively, these results suggest that defects in basal ganglia circuitry, leading to impaired inhibitory modulation of the thalamus, are neural correlates for the ADHD-associated behavioral manifestations in $Git1^{\check{s}/\check{s}}$ mice.
Keywords
ADHD; astrocytosis; basal ganglia; GIT1;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Swanson, J.M., Sergeant, J.A., Taylor, E., Sonuga-Barke, E.J., Jensen, P.S., and Cantwell, D.P. (1998). Attention-deficit hyperactivity disorder and hyperkinetic disorder. Lancet 351, 429-433.   DOI   ScienceOn
2 Swanson, J.M., Kinsbourne, M., Nigg, J., Lanphear, B., Stefanatos, G.A., Volkow, N., Taylor, E., Casey, B.J., Castellanos, F.X., and Wadhwa, P.D. (2007). Etiologic subtypes of attentiondeficit/ hyperactivity disorder: brain imaging, molecular genetic and environmental factors and the dopamine hypothesis. Neuropsychol. Rev. 17, 39-59.   DOI
3 Tabuchi, K., Blundell, J., Etherton, M.R., Hammer, R.E., Liu, X., Powell, C.M., and Sudhof, T.C. (2007). A neuroligin-3 mutation implicated in autism increases inhibitory synaptic transmission in mice. Science 318, 71-76.   DOI   ScienceOn
4 Todd, R.D., and Botteron, K.N. (2001). Is attention-deficit/hyperactivity disorder an energy deficiency syndrome? Biol. Psychiatry 50, 151-158.   DOI   ScienceOn
5 Volkow, N.D., Wang, G.J., Newcorn, J., Telang, F., Solanto, M.V., Fowler, J.S., Logan, J., Ma, Y., Schulz, K., Pradhan, K., et al. (2007). Depressed dopamine activity in caudate and preliminary evidence of limbic involvement in adults with attentiondeficit/ hyperactivity disorder. Arch. Gen. Psychiatry 64, 932-940.   DOI   ScienceOn
6 Volterra, A., and Meldolesi, J. (2005). Astrocytes, from brain glue to communication elements: the revolution continues. Nat. Rev. Neurosci. 6, 626-640.   DOI   ScienceOn
7 Won, H., Mah, W., Kim, E., Kim, J.W., Hahm, E.K., Kim, M.H., Cho, S., Kim, J., Jang, H., Cho, S.C., et al. (2011). GIT1 is associated with ADHD in humans and ADHD-like behaviors in mice. Nat. Med. 17, 566-572.   DOI   ScienceOn
8 Yoon, S., Han, E., Choi, Y.C., Kee, H., Jeong, Y., Yoon, J., and Baek, K. (2014). Inhibition of cell proliferation and migration by miR- 509-3p that targets CDK2, Rac1, and PIK3C2A. Mol. Cells 37, 314-321.   DOI   ScienceOn
9 Araque, A., Parpura, V., Sanzgiri, R.P., and Haydon, P.G. (1998). Glutamate-dependent astrocyte modulation of synaptic transmission between cultured hippocampal neurons. Eur. J. Neurosci. 10, 2129-2142.   DOI   ScienceOn
10 Anaya-Martinez, V., Martinez-Marcos, A., Martinez-Fong, D., Aceves, J., and Erlij, D. (2006). Substantia nigra compacta neurons that innervate the reticular thalamic nucleus in the rat also project to striatum or globus pallidus: implications for abnormal motor behavior. Neuroscience 143, 477-486.   DOI   ScienceOn
11 Aylward, E.H., Reiss, A.L., Reader, M.J., Singer, H.S., Brown, J.E., and Denckla, M.B. (1996). Basal ganglia volumes in children with attention-deficit hyperactivity disorder. J. Child Neurol. 11, 112-115.   DOI
12 Biederman, J. (2005). Attention-deficit/hyperactivity disorder: a selective overview. Biol. Psychiatry 57, 1215-1220.   DOI   ScienceOn
13 Castellanos, F.X., Giedd, J.N., Marsh, W.L., Hamburger, S.D., Vaituzis, A.C., Dickstein, D.P., Sarfatti, S.E., Vauss, Y.C., Snell, J.W., Lange, N., et al. (1996). Quantitative brain magnetic resonance imaging in attention-deficit hyperactivity disorder. Arch. Gen. Psychiatry 53, 607-616.   DOI
14 Durston, S., Tottenham, N.T., Thomas, K.M., Davidson, M.C., Eigsti, I.M., Yang, Y., Ulug, A.M., and Casey, B.J. (2003). Differential patterns of striatal activation in young children with and without ADHD. Biol. Psychiatry 53, 871-878.   DOI   ScienceOn
15 De Keyser, J., Mostert, J.P., and Koch, M.W. (2008). Dysfunctional astrocytes as key players in the pathogenesis of central nervous system disorders. J. Neurol. Sci. 267, 3-16.   DOI   ScienceOn
16 DeLong, M.R., and Wichmann, T. (2007). Circuits and circuit disorders of the basal ganglia. Arch. Neurol. 64, 20-24.   DOI   ScienceOn
17 Dickstein, S.G., Bannon, K., Castellanos, F.X., and Milham, M.P. (2006). The neural correlates of attention deficit hyperactivity disorder: an ALE meta-analysis. J. Child Psychol. Psychiatry 47, 1051-1062.   DOI   ScienceOn
18 Eid, T., Thomas, M.J., Spencer, D.D., Runden-Pran, E., Lai, J.C., Malthankar, G.V., Kim, J.H., Danbolt, N.C., Ottersen, O.P., and de Lanerolle, N.C. (2004). Loss of glutamine synthetase in the human epileptogenic hippocampus: possible mechanism for raised extracellular glutamate in mesial temporal lobe epilepsy. Lancet 363, 28-37.   DOI   ScienceOn
19 Etienne-Manneville, S., and Hall, A. (2001). Integrin-mediated activation of Cdc42 controls cell polarity in migrating astrocytes through PKCzeta. Cell 106, 489-498.   DOI   ScienceOn
20 Foldy, C., Malenka, R.C., and Sudhof, T.C. (2013). Autismassociated neuroligin-3 mutations commonly disrupt tonic endocannabinoid signaling. Neuron 78, 498-509.   DOI   ScienceOn
21 Fukata, M., Nakagawa, M., and Kaibuchi, K. (2003). Roles of Rhofamily GTPases in cell polarisation and directional migration. Curr. Opin. Cell Biol. 15, 590-597.   DOI   ScienceOn
22 Halassa, M.M., and Haydon, P.G. (2010). Integrated brain circuits: astrocytic networks modulate neuronal activity and behavior. Ann. Rev. Physiol. 72, 335-355.   DOI   ScienceOn
23 Gantois, I., Fang, K., Jiang, L., Babovic, D., Lawrence, A.J., Ferreri, V., Teper, Y., Jupp, B., Ziebell, J., Morganti-Kossmann, C.M., et al. (2007). Ablation of D1 dopamine receptor-expressing cells generates mice with seizures, dystonia, hyperactivity, and impaired oral behavior. Proc. Natl. Acad. Sci. USA 104, 4182-4187.   DOI   ScienceOn
24 Gerring, J., Brady, K., Chen, A., Quinn, C., Herskovits, E., Bandeen-Roche, K., Denckla, M.B., and Bryan, R.N. (2000). Neuroimaging variables related to development of Secondary Attention Deficit Hyperactivity Disorder after closed head injury in children and adolescents. Brain Injury 14, 205-218.   DOI
25 Graybiel, A.M. (2000). The basal ganglia. Curr. Biol. 10, R509-511.   DOI   ScienceOn
26 Hoefen, R.J., and Berk, B.C. (2006). The multifunctional GIT family of proteins. J. Cell Sci. 119, 1469-1475.   DOI   ScienceOn
27 Ivanov, I., Bansal, R., Hao, X., Zhu, H., Kellendonk, C., Miller, L., Sanchez-Pena, J., Miller, A.M., Chakravarty, M.M., Klahr, K., et al. (2010). Morphological abnormalities of the thalamus in youths with attention deficit hyperactivity disorder. Am. J. Psychiatry 167, 397-408.   DOI   ScienceOn
28 Kam, K., and Nicoll, R. (2007). Excitatory synaptic transmission persists independently of the glutamate-glutamine cycle. J. Neurosci. 27, 9192-9200.   DOI   ScienceOn
29 Killeen, P.R., Russell, V.A., and Sergeant, J.A. (2013). A behavioral neuroenergetics theory of ADHD. Neurosci. Biobehav. Rev. 37, 625-657.   DOI   ScienceOn
30 Karlsson, R.M., Tanaka, K., Heilig, M., and Holmes, A. (2008). Loss of glial glutamate and aspartate transporter (excitatory amino acid transporter 1) causes locomotor hyperactivity and exaggerated responses to psychotomimetics: rescue by haloperidol and metabotropic glutamate 2/3 agonist. Biol. Psychiatry 64, 810-814.   DOI   ScienceOn
31 Kim, M.H., Choi, J., Yang, J., Chung, W., Kim, J.H., Paik, S.K., Kim, K., Han, S., Won, H., Bae, Y.S., et al. (2009). Enhanced NMDA receptor-mediated synaptic transmission, enhanced long-term potentiation, and impaired learning and memory in mice lacking IRSp53. J. Neurosci. 29, 1586-1595.   DOI   ScienceOn
32 Kravitz, A.V., Freeze, B.S., Parker, P.R., Kay, K., Thwin, M.T., Deisseroth, K., and Kreitzer, A.C. (2010). Regulation of parkinsonian motor behaviours by optogenetic control of basal ganglia circuitry. Nature 466, 622-626.   DOI   ScienceOn
33 Lee, S., Yoon, B.E., Berglund, K., Oh, S.J., Park, H., Shin, H.S., Augustine, G.J., and Lee, C.J. (2010). Channel-mediated tonic GABA release from glia. Science 330, 790-796.   DOI   ScienceOn
34 Liang, S.L., Carlson, G.C., and Coulter, D.A. (2006). Dynamic regulation of synaptic GABA release by the glutamate-glutamine cycle in hippocampal area CA1. J. Neurosci. 26, 8537-8548.   DOI   ScienceOn
35 Liu, F., Jia, L., Thompson-Baine, A.M., Puglise, J.M., Ter Beest, M.B., and Zegers, M.M. (2010). Cadherins and Pak1 control contact inhibition of proliferation by Pak1-betaPIX-GIT complexdependent regulation of cell-matrix signaling. Mol. Cell. Biol. 30, 1971-1983.   DOI   ScienceOn
36 Overmeyer, S., Bullmore, E.T., Suckling, J., Simmons, A., Williams, S.C., Santosh, P.J., and Taylor, E. (2001). Distributed grey and white matter deficits in hyperkinetic disorder: MRI evidence for anatomical abnormality in an attentional network. Psychol. Med. 31, 1425-1435.
37 Mannix, R., Berglass, J., Berkner, J., Moleus, P., Qiu, J., Andrews, N., Gunner, G., Berglass, L., Jantzie, L.L., Robinson, S., et al. (2014). Chronic gliosis and behavioral deficits in mice following repetitive mild traumatic brain injury. J. Neurosurgery 121, 1342-1350.   DOI   ScienceOn
38 Ogdie, M.N., Fisher, S.E., Yang, M., Ishii, J., Francks, C., Loo, S.K., Cantor, R.M., McCracken, J.T., McGough, J.J., Smalley, S.L., et al. (2004). Attention deficit hyperactivity disorder: fine mapping supports linkage to 5p13, 6q12, 16p13, and 17p11. Am. J. Hum. Genet. 75, 661-668.   DOI   ScienceOn
39 Ortinski, P.I., Dong, J., Mungenast, A., Yue, C., Takano, H., Watson, D.J., Haydon, P.G., and Coulter, D.A. (2010). Selective induction of astrocytic gliosis generates deficits in neuronal inhibition. Nat. Neurosci. 13, 584-591.   DOI   ScienceOn
40 Penela, P., Nogues, L., and Mayor, F., Jr. (2014). Role of G proteincoupled receptor kinases in cell migration. Curr. Opin. Cell Biol. 27, 10-17.   DOI
41 Premont, R.T., Claing, A., Vitale, N., Freeman, J.L., Pitcher, J.A., Patton, W.A., Moss, J., Vaughan, M., and Lefkowitz, R.J. (1998). beta2-Adrenergic receptor regulation by GIT1, a G proteincoupled receptor kinase-associated ADP ribosylation factor GTPase-activating protein. Proc. Natl. Acad. Sci. USA 95, 14082-14087.   DOI
42 Qiu, A., Crocetti, D., Adler, M., Mahone, E.M., Denckla, M.B., Miller, M.I., and Mostofsky, S.H. (2009). Basal ganglia volume and shape in children with attention deficit hyperactivity disorder. Am. J. Psychiatry 166, 74-82.   DOI   ScienceOn
43 Sandau, U.S., Alderman, Z., Corfas, G., Ojeda, S.R., and Raber, J. (2012). Astrocyte-specific disruption of SynCAM1 signaling results in ADHD-like behavioral manifestations. PLoS One 7, e36424.   DOI   ScienceOn
44 Rothwell, P.E., Fuccillo, M.V., Maxeiner, S., Hayton, S.J., Gokce, O., Lim, B.K., Fowler, S.C., Malenka, R.C., and Sudhof, T.C. (2014). Autism-associated neuroligin-3 mutations commonly impair striatal circuits to boost repetitive behaviors. Cell 158, 198-212.   DOI   ScienceOn
45 Russell, V.A. (2002). Hypodopaminergic and hypernoradrenergic activity in prefrontal cortex slices of an animal model for attention- deficit hyperactivity disorder--the spontaneously hypertensive rat. Behav. Brain Res. 130, 191-196.   DOI   ScienceOn
46 Russell, V.A., Oades, R.D., Tannock, R., Killeen, P.R., Auerbach, J.G., Johansen, E.B., and Sagvolden, T. (2006). Response variability in attention-deficit/hyperactivity disorder: a neuronal and glial energetics hypothesis. Behav. Brain Funct. 2, 30.   DOI   ScienceOn
47 Shaywitz, B.A., Cohen, D.J., and Bowers, M.B., Jr. (1977). CSF monoamine metabolites in children with minimal brain dysfunction: evidence for alteration of brain dopamine. A preliminary report. J. Pediatrics 90, 67-71.   DOI
48 Sonnewald, U., Westergaard, N., and Schousboe, A. (1997). Glutamate transport and metabolism in astrocytes. Glia 21, 56-63.   DOI
49 Sontag, T.A., Tucha, O., Walitza, S., and Lange, K.W. (2010). Animal models of attention deficit/hyperactivity disorder (ADHD): a critical review. Atten. Defic. Hyperact. Disord. 2, 1-20.   DOI