• Title/Summary/Keyword: chemical vapor deposition

Search Result 2,447, Processing Time 0.027 seconds

Development of Highly Conductive and Corrosion-Resistant Cr-Diamond-like Carbon Films

  • Ko, Minjung;Jun, Yee Sle;Lee, Na Rae;Kang, Suhee;Moon, Kyoung Il;Lee, Caroline Sunyong
    • Journal of the Korean Ceramic Society
    • /
    • v.56 no.3
    • /
    • pp.317-324
    • /
    • 2019
  • Cr-diamond-like carbon (Cr-DLC) films were deposited using a hybrid method involving both physical vapor deposition and plasma-enhanced chemical vapor deposition. DLC sputtering was carried out using argon and acetylene gases. With an increase in the DC power, the Cr content increased from 14.7 to 29.7 at%. The Cr-C bond appeared when the Cr content was 17.6 at% or more. At a Cr content of 17.6 at%, the films showed an electrical conductivity of > 363 S/cm. The current density was 9.12 × 10-2 ㎂/㎠, and the corrosion potential was 0.240 V. Therefore, a Cr content of 17.6 at% was found to be optimum for the deposition of the Cr-DLC thin films. The Cr-DLC thin films developed in this study showed high conductivity and corrosion resistance, and hence, are suitable for applications in separators.

Effect of Torch Speed and Solid Layer Thickness on Heat Transfer and Particle Deposition During modified Chemical Vapor Deposition Process (수정된 화학증착과정에서 토치이송과 고체층이 열전달과 입자부착에 미치는 영향)

  • 박경순;최만수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.5
    • /
    • pp.1301-1309
    • /
    • 1994
  • A study of heat transfer and thermophoretic particle deposition has been carried out for the Modified Chemical Vapor Deposition(MCVD) process. A new concept utilizing two torches is suggested to simulate the heating effects from repeated traversing torches. Calculation results for the wall temperatures and deposition efficiency are in good agreement with experimental data. The effects of variable properties are included and heat flux boundary condition is used to simulate the moving torch heating. A conjugate heat transfer which includes heat conduction through solid layer and heat teansfer in a gas in a tube is analyzed. Of particular interests are the effects of torch speeds and solid layer thicknesses on the deposition efficiency, rate and the tapered entry length.

An Experimental Study of the Modified Chemical Vapor Deposition Process -Temperature Distribution and Particle Deposition Measurements- (수정된 화학증착(MCVD)에 관한 실험적 연구 - 온도분포와 입자부착 측정)

  • 조재걸;최만수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.11
    • /
    • pp.3057-3065
    • /
    • 1994
  • An experimental study has been made for heat transfer and particle deposition during the Modified Chemical Vapor Deposition process which is currently utilized to manufacture high quality optical waveguides. The distributions of tube wall temperatures, rates and efficiencies of particle deposition were measured. Results indicate that the temperature distributions of the tube wall in the axial direction yield the quasi-steady form in which temperature distributions fit in one curve if the relative distance from the moving torch is used as an axial coordinate. Due to the repeated heatings from the traversing torch, the wall temperatures are shown to reach the minimum ahead of torch and it is shown that the two torch formulation suggested by Park and Choi is valid to predict this minimum temperature. Measured wall temperatures, particle deposition efficiencies and tapered entry length are compared with the previous modelling results and shown to be in agreement.

Vapor Deposition Techniques for Synthesis of Two-Dimensional Transition Metal Dichalcogenides

  • Song, Jeong-Gyu;Park, Kyunam;Park, Jusang;Kim, Hyungjun
    • Applied Microscopy
    • /
    • v.45 no.3
    • /
    • pp.119-125
    • /
    • 2015
  • Two-dimensional (2D) transition metal dichalcogenides (TMDCs) have attracted significant attention due to their unique and exotic properties attributed to their low dimensionality. In particular, semiconducting 2D TMDCs such as $MoS_2$, $WS_2$, $MoSe_2$, and $WSe_2$ have been demonstrated to be feasible for various advanced electronic and optical applications. In these regards, process to synthesize high quality 2D TMDCs layers with high reliability, wafer-scale uniformity, controllable layer number and excellent electronic properties is essential in order to use 2D TMDCs in practical applications. Vapor deposition techniques, such as physical vapor deposition, chemical vapor deposition and atomic layer deposition, could be promising processes to produce high quality 2D TMDCs due to high purity, thickness controllability and thickness uniformity. In this article, we briefly review recent research trend on vapor deposition techniques to synthesize 2D TMDCs.

Chemical Vapor Deposition of β-LiGaO2 Films on Si(100) Using a Novel Single Precursor

  • Sung, Myung M.;Kim, Chang G.;Kim, Yun-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.4
    • /
    • pp.480-484
    • /
    • 2004
  • $LiGaO_2$ films have been grown on Si (100) substrates using a new single precursor $[Li(OCH_2CH_2OCH_3)_2-Ga(CH_3)_2]_2$ under high vacuum conditions $(5{\times}10^{-6}Torr)$. The $[Li(OCH_2CH_2OCH_3)_2Ga(CH_3)_2]_2$ was synthe-sized and characterized by using spectroscopic methods and single-crystal X-ray diffraction analysis. The chemical composition, crystalline structure, and morphology of the deposited films were investigated by X-ray photoelectron spectroscopy, X-ray diffraction, and scanning electron microscopy. The results show that polycrystalline $LiGaO_2$ films preferentially oriented in the [010] direction can be deposited on Si (100) at 500-550$^{\circ}C$ by metal organic chemical vapor deposition (MOCVD). The single precursor $[LiOCH_2CH_2OCH_3)_2-Ga(CH_3)_2]_2$ has been found suitable for chemical vapor deposition of $LiGaO_2$ thin films on Si substrates.

The Effect of in situ Ultraviolet Irradiation on the Chemical Vapor Deposited ZnO Thin Films (증착 중 자외광 노광에 의한 산화 아연 박막의 특성 변화)

  • Kim, Bo-Seok;Baik, Seung Jae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.4
    • /
    • pp.241-246
    • /
    • 2016
  • ZnO thin films have wide application areas due to its versatile properties as transparent conductors, wide-bandgap n-type semiconductors, gas sensor materials, and etc. We have performed a systematic investigation on ultraviolet-assisted CVD (chemical vapor deposition) method. Ultraviolet irradiation during the deposition of ZnO causes chemical reduction on the growing surface; which results in the reduction of the deposition rate, increase in the surface roughness, and decrease of the electrical resistivity. These effects produce larger characteristic variation with various deposition conditions in terms of surface morphology and optical/electrical properties compared to normal CVD deposited ZnO thin films. This versatile controllability of ultraviolet-assisted CVD can provide a larger processing options in the fabrication of nano-structured materials and flexible device applications.

Characterization of Chemical Vapor Condensation Reactor for Parylene-N Thin Film Deposition

  • Lee, Jong-Seung;Yeo, Seok-Ki;Park, Chin-Ho
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.897-900
    • /
    • 2003
  • Chemical vapor condensation (CVC) reactor was investigated for the deposition of Parylene-N thin films as the passivation layer for organic light emitting diodes (OLEDs). Several gas inlet manifold designs were tested to improve the deposition rate and its uniformity, and it was found that proper inlet design is crucial to get the desired film properties. Process characterization was also performed with the modified inlets to optimize the process variables.

  • PDF

Effects of Inner Jet Injection on Particle Deposition in the Annular Modified Chemical Vapor Deposition Process Using Concentric Tubes (환상형원관을 사용하는 수정된 화학증착(MCVD)방법에서 내부 제트분사가 입자부착에 미치는 영향)

  • 최만수;박경순
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.1
    • /
    • pp.212-222
    • /
    • 1994
  • In the annular Modified Chemical Vapor Deposition process using two concentric tubes, the inner tube is heated to maintain high temperature gradients to have high thermophoretic force which can increase particle deposition efficiency. However, higher axial velocity in a narrow gap between inner and outer tubes can result in a longer tapered entry length. In the present paper, a new concept using an annular jet from the inner tube is presented and shown to significantly reduce the tapered entry length with maintaining high efficiency. Effects of a jet injection on heat transfer, fluid flow and particle deposition have been studied. Of particular interests are the effects of jet velocity, jet location and temperature on the deposition efficiency and tapered length . Torch heating effects from both the previous and present passes are included and the effect of surface radiation between inner and outer tubes is also considered.

Metal Organic Chemical Vapor Deposition Characteristics of Germanium Precursors (Metal Organic Chemical Vapor Deposition법을 이용한 Germanium 전구체의 증착 특성 연구)

  • Kim, Sun-Hee;Kim, Bong-June;Kim, Do-Heyoung;Lee, June-Key
    • Korean Journal of Materials Research
    • /
    • v.18 no.6
    • /
    • pp.302-306
    • /
    • 2008
  • Polycrystalline germanium (Ge) thin films were grown by metal organic chemical vapor deposition (MOCVD) using tetra-allyl germanium [$Ge(allyl)_4$], and germane ($GeH_4$) as precursors. Ge thin films were grown on a $TiN(50nm)/SiO_2/Si$ substrate by varying the growth conditions of the reactive gas ($H_2$), temperature ($300-700^{\circ}C$) and pressure (1-760Torr). $H_2$ gas helps to remove carbon from Ge film for a $Ge(allyl)_4$ precursor but not for a $GeH_4$ precursor. $Ge(allyl)_4$ exhibits island growth (VW mode) characteristics under conditions of 760Torr at $400-700^{\circ}C$, whereas $GeH_4$ shows a layer growth pattern (FM mode) under conditions of 5Torr at $400-700^{\circ}C$. The activation energies of the two precursors under optimized deposition conditions were 13.4 KJ/mol and 31.0 KJ/mol, respectively.

A Study on the Growth Rate and Surface Shape of Single Crystalline Diamond According to HFCVD Deposition Temperature (HFCVD 증착 온도 변화에 따른 단결정 다이아몬드 표면 형상 및 성장률 변화)

  • Gwon, J.U.;Kim, M.S.;Jang, T.H.;Bae, M.K.;Kim, S.W.;Kim, T.G.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.34 no.5
    • /
    • pp.239-244
    • /
    • 2021
  • Following Silicon Carbide, single crystal diamond continues to attract attention as a next-generation semiconductor substrate material. In addition to excellent physical properties, large area and productivity are very important for semiconductor substrate materials. Research on the increase in area and productivity of single crystal diamonds has been carried out using various devices such as HPHT (High Pressure High Temperature) and MPECVD (Microwave Plasma Enhanced Chemical Vapor Deposition). We hit the limits of growth rate and internal defects. However, HFCVD (Hot Filament Chemical Vapor Deposition) can be replaced due to the previous problem. In this study, HFCVD confirmed the distance between the substrate and the filament, the accompanying growth rate, the surface shape, and the Raman shift of the substrate after vapor deposition according to the vapor deposition temperature change. As a result, it was confirmed that the difference in the growth rate of the single crystal substrate due to the change in the vapor deposition temperature was gained up to 5 times, and that as the vapor deposition temperature increased, a large amount of polycrystalline diamond tended to be generated on the surface.