Browse > Article
http://dx.doi.org/10.12656/jksht.2021.34.5.239

A Study on the Growth Rate and Surface Shape of Single Crystalline Diamond According to HFCVD Deposition Temperature  

Gwon, J.U. (Department of Nanomechatronics Engineering, Pusan National University)
Kim, M.S. (Department of Nanomechatronics Engineering, Pusan National University)
Jang, T.H. (Department of Nanomechatronics Engineering, Pusan National University)
Bae, M.K. (Department of Nano Fusion Technology, Pusan National University)
Kim, S.W. (Adamant Namiki Precision Jewel Co., Ltd)
Kim, T.G. (Department of Nanomechatronics Engineering, Pusan National University)
Publication Information
Journal of the Korean Society for Heat Treatment / v.34, no.5, 2021 , pp. 239-244 More about this Journal
Abstract
Following Silicon Carbide, single crystal diamond continues to attract attention as a next-generation semiconductor substrate material. In addition to excellent physical properties, large area and productivity are very important for semiconductor substrate materials. Research on the increase in area and productivity of single crystal diamonds has been carried out using various devices such as HPHT (High Pressure High Temperature) and MPECVD (Microwave Plasma Enhanced Chemical Vapor Deposition). We hit the limits of growth rate and internal defects. However, HFCVD (Hot Filament Chemical Vapor Deposition) can be replaced due to the previous problem. In this study, HFCVD confirmed the distance between the substrate and the filament, the accompanying growth rate, the surface shape, and the Raman shift of the substrate after vapor deposition according to the vapor deposition temperature change. As a result, it was confirmed that the difference in the growth rate of the single crystal substrate due to the change in the vapor deposition temperature was gained up to 5 times, and that as the vapor deposition temperature increased, a large amount of polycrystalline diamond tended to be generated on the surface.
Keywords
Single crystal diamond; HFCVD (Hot Filament Chemical Vapor Deposition); Growth rate; Raman Shift; FWHM; Surface Morphology;
Citations & Related Records
연도 인용수 순위
  • Reference
1 A. Gicquel, K. Hassouni, F. Silva, and J. Achard : Curr. Appl. Phys., 1 (2001) 479.   DOI
2 Wang, Tao, et al. : Diamond and Related Materials 13(1) (2004) 6-13.   DOI
3 Yu. M. Tairov : Materials Science and Engineering: B, 29 (1995), 83-89.   DOI
4 G. E. Harlow : American Museum of Natural History, (1998), 214-272.
5 M. S. Kim, M. K. Bae, S. -W. Kim, and T. G. Kim : J. of the Korean Society for Heat Treatment, 33(1) (2020).
6 S. Ohmagari, H. Yamada, H. Umezawa, A. Chayahara, T. Teraji, and S. Shikata : Diamond and Related Materials, 48 (2014), 19-23.   DOI
7 C. J. Chu, M. P. D'Evelyn, R. H. Hauge, and J. L. Margrave : Journal of Materials Research, 5 (1990) 2405-2413.   DOI
8 G. H. Song, J. H. Yoon, H. S. Kim, C. Sun, R. F. Huang, L. S. Wen : Materials Letters, 56 (2002) 832-837.   DOI
9 S. J. Harris : Applied Physics Letters 56 (1990), 2298-2300.   DOI
10 M . Frenklach and K. E. Spear : Journal of M aterials Research, 3 (1988) 133-140.   DOI
11 H. Aida, K. Koyama, K. Ikejiri, and S. W. Kim : United State Patent, US20160237592A1 (2016).
12 L. Fengnan, Z. Jingwen, W. Xiaoliang, Z. Minghui, and W. Hongxing, Crystals 7 (2017) 114.   DOI