DOI QR코드

DOI QR Code

Vapor Deposition Techniques for Synthesis of Two-Dimensional Transition Metal Dichalcogenides

  • Song, Jeong-Gyu (School of Electrical and Electronic Engineering, Yonsei University) ;
  • Park, Kyunam (School of Electrical and Electronic Engineering, Yonsei University) ;
  • Park, Jusang (School of Electrical and Electronic Engineering, Yonsei University) ;
  • Kim, Hyungjun (School of Electrical and Electronic Engineering, Yonsei University)
  • Received : 2015.09.11
  • Accepted : 2015.09.13
  • Published : 2015.09.30

Abstract

Two-dimensional (2D) transition metal dichalcogenides (TMDCs) have attracted significant attention due to their unique and exotic properties attributed to their low dimensionality. In particular, semiconducting 2D TMDCs such as $MoS_2$, $WS_2$, $MoSe_2$, and $WSe_2$ have been demonstrated to be feasible for various advanced electronic and optical applications. In these regards, process to synthesize high quality 2D TMDCs layers with high reliability, wafer-scale uniformity, controllable layer number and excellent electronic properties is essential in order to use 2D TMDCs in practical applications. Vapor deposition techniques, such as physical vapor deposition, chemical vapor deposition and atomic layer deposition, could be promising processes to produce high quality 2D TMDCs due to high purity, thickness controllability and thickness uniformity. In this article, we briefly review recent research trend on vapor deposition techniques to synthesize 2D TMDCs.

Keywords

References

  1. Baugher B W H, Churchill H O H, Yang Y, and Jarillo-Herrero P (2013) Intrinsic electronic transport properties of high-quality monolayer and bilayer MoS2. Nano Letters 13, 4212-4216. https://doi.org/10.1021/nl401916s
  2. Bernardi M, Palummo M, and Grossman J C (2013) Extraordinary sunlight absorption and 1 nm-thick photovoltaics using two-dimensional monolayer materials. Nano Letters 13, 3664-3670. https://doi.org/10.1021/nl401544y
  3. Cheng R, Li D, Zhou H, Wang C, Yin A, Jiang S, Liu Y, Chen Y, Huang Y, and Duan X (2014) Electroluminescence and photocurrent generation from atomically sharp WSe2/MoS2 heterojunction pn diodes. Nano Letters 14, 5590-5597. https://doi.org/10.1021/nl502075n
  4. Chhowalla M, Shin H S, Eda G, Li L J, Loh K P, and Zhang H (2013) The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nature Chemistry 5, 263-275. https://doi.org/10.1038/nchem.1589
  5. Coleman J N, Lotya M, O'Neill A, Bergin S D, King P J, Khan U, Young K, Gaucher A, De S, and Smith R J (2011) Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science 331, 568-571. https://doi.org/10.1126/science.1194975
  6. Cong C, Shang J, Wu X, Cao B, Peimyoo N, Qiu C, Sun L, and Yu T (2014) Synthesis and optical properties of large-area single-crystalline 2D semiconductor WS2 monolayer from chemical vapor deposition. Advanced Optical Materials 2, 131-136. https://doi.org/10.1002/adom.201300428
  7. Dasgupta N P, Meng X, Elam J W, and Martinson A B (2015) Atomic layer deposition of metal sulfide materials. Accounts of Chemical Research 48, 341-348. https://doi.org/10.1021/ar500360d
  8. Dumcenco D, Ovchinnikov D, Marinov K, Lazic P, Gibertini M, Marzari N, Sanchez O L, Kung Y C, Krasnozhon D, and Chen M W (2015) Largearea epitaxial monolayer MoS2. ACS Nano 9, 4611-4620. https://doi.org/10.1021/acsnano.5b01281
  9. Eda G, Yamaguchi H, Voiry D, Fujita T, Chen M, and Chhowalla M (2011) Photoluminescence from chemically exfoliated MoS2. Nano Letters 11, 5111-5116. https://doi.org/10.1021/nl201874w
  10. Elias A L, Perea-Lopez N, Castro-Beltran A, Berkdemir A, Lv R, Feng S, Long A D, Hayashi T, Kim Y A, Endo M, Gutierrez H R, Pradhan N R, Balicas L, Mallouk T E, Lopez-Urias F, Terrones H, and Terrones M (2013) Controlled synthesis and transfer of large-area WS2 sheets: from single layer to few layers. ACS Nano 7, 5235-5242. https://doi.org/10.1021/nn400971k
  11. Furchi M M, Pospischil A, Libisch F, Burgdorfer J, and Mueller T (2014) Photovoltaic effect in an electrically tunable van der Waals heterojunction. Nano Letters 14, 4785-4791. https://doi.org/10.1021/nl501962c
  12. Georgiou T, Jalil R, Belle B D, Britnell L, Gorbachev R V, Morozov S V, Kim Y J, Gholinia A, Haigh S J, and Makarovsky O (2013) Vertical fieldeffect transistor based on graphene-WS2 heterostructures for flexible and transparent electronics. Nature Nanotechnology 8, 100-103.
  13. He Q, Zeng Z, Yin Z, Li H, Wu S, Huang X, and Zhang H (2012) Fabrication of flexible MoS2 thin-film transistor arrays for practical gas-sensing applications. Small 8, 2994-2999. https://doi.org/10.1002/smll.201201224
  14. Huang J K, Pu J, Hsu C L, Chiu M H, Juang Z Y, Chang Y H, Chang W H, Iwasa Y, Takenobu T, and Li L J (2013) Large-area synthesis of highly crystalline WSe2 monolayers and device applications. ACS Nano 8, 923-930.
  15. Ji Q, Kan M, Zhang Y, Guo Y, Ma D, Shi J, Sun Q, Chen Q, Zhang Y, and Liu Z (2014) Unravelling orientation distribution and merging behavior of monolayer MoS2 domains on sapphire. Nano Letters 15, 198-205.
  16. Jin Z, Shin S, Kwon D H, Han S J, and Min Y S (2014) Novel chemical route for atomic layer deposition of MoS2 thin film on SiO2/Si substrate. Nanoscale 6, 14453-14458. https://doi.org/10.1039/C4NR04816D
  17. Kang K, Xie S, Huang L, Han Y, Huang P Y, Mak K F, Kim C J, Muller D, and Park J (2015) High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity. Nature 520, 656-660. https://doi.org/10.1038/nature14417
  18. Late D J, Huang Y K, Liu B, Acharya J, Shirodkar S N, Luo J, Yan A, Charles D, Waghmare U V, Dravid V P, and Rao C N R (2013) Sensing behavior of atomically thin-layered MoS2 transistors. ACS Nano 7, 4879-4891. https://doi.org/10.1021/nn400026u
  19. Lee C H, Lee G H, van der Zande A M, Chen W, Li Y, Han M, Cui X, Arefe G, Nuckolls C, Heinz T F, Guo J, Hone J, and Kim P (2014a) Atomically thin p-n junctions with van der Waals heterointerfaces. Nat Nano 9, 676-681. https://doi.org/10.1038/nnano.2014.150
  20. Lee G H, Yu Y J, Cui X, Petrone N, Lee C H, Choi M S, Lee D Y, Lee C, Yoo W J, and Watanabe K (2013) Flexible and transparent MoS2 field-effect transistors on hexagonal boron nitride-graphene heterostructures. ACS Nano 7, 7931-7936. https://doi.org/10.1021/nn402954e
  21. Lee J H, Lee E K, Joo W J, Jang Y, Kim B S, Lim J Y, Choi S H, Ahn S J, Ahn J R, and Park M H (2014b) Wafer-scale growth of single-crystal monolayer graphene on reusable hydrogen-terminated germanium. Science 344, 286-289. https://doi.org/10.1126/science.1252268
  22. Lee Y H, Zhang X Q, Zhang W, Chang M T, Lin C T, Chang K D, Yu Y C, Wang J T W, Chang C S, Li L J, and Lin T W (2012) Synthesis of largearea MoS2 atomic layers with chemical vapor deposition. Advanced Materials 24, 2320-2325. https://doi.org/10.1002/adma.201104798
  23. Li H, Yin Z, He Q, Li H, Huang X, Lu G, Fam D W H, Tok A I Y, Zhang Q, and Zhang H (2012) Fabrication of single- and multilayer MoS2 filmbased field-effect transistors for sensing NO at room temperature. Small 8, 63-67. https://doi.org/10.1002/smll.201101016
  24. Lin Y C, Zhang W, Huang J K, Liu K K, Lee Y H, Liang C T, Chu C W, and Li L J (2012) Wafer-scale MoS2 thin layers prepared by MoO3 sulfurization. Nanoscale 4, 6637-6641. https://doi.org/10.1039/c2nr31833d
  25. Ling X, Lee Y H, Lin Y, Fang W, Yu L, Dresselhaus M S, and Kong J (2014) Role of the seeding promoter in MoS2 growth by chemical vapor deposition. Nano Letters 14, 464-472. https://doi.org/10.1021/nl4033704
  26. Liu B, Chen L, Liu G, Abbas A N, Fathi M, and Zhou C (2014a) Highperformance chemical sensing using schottky-contacted chemical vapor deposition grown monolayer MoS2 transistors. ACS Nano 5, 5304-5314.
  27. Liu H, Antwi K K A, Chua S, and Chi D (2014b) Vapor-phase growth and characterization of Mo1-xWxS2 (0 $\leq$ x $\leq$1) atomic layers on 2-inch sapphire substrates. Nanoscale 6, 624-629. https://doi.org/10.1039/C3NR04515C
  28. Lopez-Sanchez O, Lembke D, Kayci M, Radenovic A, and Kis A (2013) Ultrasensitive photodetectors based on monolayer MoS2. Nature Nanotechnology 8, 497-501. https://doi.org/10.1038/nnano.2013.100
  29. Mak K F, Lee C, Hone J, Shan J, and Heinz T F (2010) Atomically thin MoS_ {2}: a new direct-gap semiconductor. Physical Review Letters 105, 136805. https://doi.org/10.1103/PhysRevLett.105.136805
  30. Najmaei S, Liu Z, Zhou W, Zou X, Shi G, Lei S, Yakobson B I, Idrobo J C, Ajayan P M, and Lou J (2013) Vapour phase growth and grain boundary structure of molybdenum disulphide atomic layers. Nature Materials 12, 754-759. https://doi.org/10.1038/nmat3673
  31. Nicolosi V, Chhowalla M, Kanatzidis M G, Strano M S, and Coleman J N (2013) Liquid exfoliation of layered materials. Science 340, 1226419. https://doi.org/10.1126/science.1226419
  32. Novoselov K, Jiang D, Schedin F, Booth T, Khotkevich V, Morozov S, and Geim A (2005) Two-dimensional atomic crystals. Proceedings of the National Academy of Sciences of the United States of America 102, 10451-10453. https://doi.org/10.1073/pnas.0502848102
  33. Park J, Lee W, Choi T, Hwang S H, Myoung J M, Jung J H, Kim S H, and Kim H (2015) Layer-modulated synthesis of uniform tungsten disulfide nanosheet using gas-phase precursors. Nanoscale 7, 1308-1313. https://doi.org/10.1039/C4NR04292A
  34. Radisavljevic B, Radenovic A, Brivio J, Giacometti V, and Kis A (2011) Single-layer MoS2 transistors. Nature Nanotechnology 6, 147-150. https://doi.org/10.1038/nnano.2010.279
  35. Ramakrishna Matte H S S, Gomathi A, Manna A K, Late D J, Datta R, Pati S K, and Rao C N R (2010) MoS2 and WS2 analogues of graphene. Angewandte Chemie 122, 4153-4156. https://doi.org/10.1002/ange.201000009
  36. Shaw J C, Zhou H, Chen Y, Weiss N O, Liu Y, Huang Y, and Duan X (2014) Chemical vapor deposition growth of monolayer MoSe2 nanosheets. Nano Research 7, 511-517. https://doi.org/10.1007/s12274-014-0417-z
  37. Song J G, Park J, Lee W, Choi T, Jung H, Lee C W, Hwang S H, Myoung J M, Jung J H, and Kim S H (2013) Layer-controlled, wafer-scale, and conformal synthesis of tungsten disulfide nanosheets using atomic layer deposition. ACS Nano 7, 11333-11340. https://doi.org/10.1021/nn405194e
  38. Song J G, Ryu G H, Lee S J, Sim S, Lee C W, Choi T, Jung H, Kim Y, Lee Z, Myoung J M, Dussarrat C, Lansalot-Matras C, Park J, Choi H, and Kim H (2015) Controllable synthesis of molybdenum tungsten disulfide alloy for vertically composition-controlled multilayer. Nat Commun 6, 7817. https://doi.org/10.1038/ncomms8817
  39. Tan L K, Liu B, Teng J H, Guo S, Low H Y, and Loh K P (2014) Atomic layer deposition of a MoS2 film. Nanoscale 6, 10584-10588. https://doi.org/10.1039/C4NR02451F
  40. van der Zande A M, Huang P Y, Chenet D A, Berkelbach T C, You Y, Lee G H, Heinz T F, Reichman D R, Muller D A, and Hone J C (2013) Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide. Nature Materials 12, 554-561. https://doi.org/10.1038/nmat3633
  41. Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N, and Strano M S (2012) Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nature Nanotechnology 7, 699-712. https://doi.org/10.1038/nnano.2012.193
  42. Wu W, Wang L, Li Y, Zhang F, Lin L, Niu S, Chenet D, Zhang X, Hao Y, and Heinz T F (2014) Piezoelectricity of single-atomic-layer MoS2 for energy conversion and piezotronics. Nature 514, 470-474. https://doi.org/10.1038/nature13792
  43. Zhan Y, Liu Z, Najmaei S, Ajayan P M, and Lou J (2012) Large-area vaporphase growth and characterization of MoS2 atomic layers on a SiO2 substrate. Small 8, 966-971. https://doi.org/10.1002/smll.201102654
  44. Zhang C, Wang S, Yang L, Liu Y, Xu T, Ning Z, Zak A, Zhang Z, Tenne R, and Chen Q (2012) High-performance photodetectors for visible and near-infrared lights based on individual WS2 nanotubes. Applied Physics Letters 100, 243101. https://doi.org/10.1063/1.4729144

Cited by

  1. Atomic layer deposition of stable 2D materials vol.6, pp.1, 2018, https://doi.org/10.1088/2053-1583/aad94f