Browse > Article
http://dx.doi.org/10.4313/JKEM.2016.29.4.241

The Effect of in situ Ultraviolet Irradiation on the Chemical Vapor Deposited ZnO Thin Films  

Kim, Bo-Seok (Department of Electrical, Electronic, and Control Engineering, Hankyong National University)
Baik, Seung Jae (Department of Electrical, Electronic, and Control Engineering, Hankyong National University)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.29, no.4, 2016 , pp. 241-246 More about this Journal
Abstract
ZnO thin films have wide application areas due to its versatile properties as transparent conductors, wide-bandgap n-type semiconductors, gas sensor materials, and etc. We have performed a systematic investigation on ultraviolet-assisted CVD (chemical vapor deposition) method. Ultraviolet irradiation during the deposition of ZnO causes chemical reduction on the growing surface; which results in the reduction of the deposition rate, increase in the surface roughness, and decrease of the electrical resistivity. These effects produce larger characteristic variation with various deposition conditions in terms of surface morphology and optical/electrical properties compared to normal CVD deposited ZnO thin films. This versatile controllability of ultraviolet-assisted CVD can provide a larger processing options in the fabrication of nano-structured materials and flexible device applications.
Keywords
Chemical vapor deposition; ZnO; Ultraviolet;
Citations & Related Records
연도 인용수 순위
  • Reference
1 A. Dev, A. Elshaer, and T. Voss, IEEE J. Selected Topics in Quantum Electronics, 17, 896 (2011). [DOI: http://dx.doi.org/10.1109/JSTQE.2010.2082506]   DOI
2 F. S. Hickernell, Proc. IEEE, 64, 631 (1976). [DOI: http://dx.doi.org/10.1109/PROC.1976.10187]   DOI
3 P. K. Samanta, S. Basak, and P. R. Chaudhuri, Materials Today, 14, 295 (2011). [DOI: http://dx.doi.org/10.1016/S1369-7021(11)70148-1]   DOI
4 N. F. Foster, G.A. Rozgonyi, Appl. Phys Lett, 8, 221 (1966). [DOI: http://dx.doi.org/10.1063/1.1754565]   DOI
5 O. Kluth, B. Rech, L. Houben, S. Wieder, G. Schope, C. Beneking, H. Wagner, A. Loffl, and H. W. Schock, Thin Solid Films, 351, 247 (1999). [DOI: http://dx.doi.org/10.1016/S0040-6090(99)00085-1]   DOI
6 C. Agashe, O. Kluth, J. Hüpkes, U. Zastrow, B. Rech, and M. Wuttig, J. Appl. Phys., 95, 1911 (2004). [DOI: http://dx.doi.org/10.1063/1.1641524]   DOI
7 B. Rech and H. Wagner, Appl. Phys. A, 69, 155 (1999). [DOI: http://dx.doi.org/10.1007/s003390050986]   DOI
8 W. Kern and R. C. Heim, J. Electrochem. Soc., 117, 562 (1970). [DOI: http://dx.doi.org/10.1149/1.2407572]   DOI
9 S. Fay, U. Kroll, C. Bucher, E. Vallat-Sauvain, and A. Shah, Sol. Energy Mater. & Sol. Cells, 86, 385 (2005). [DOI: http://dx.doi.org/10.1016/j.solmat.2004.08.002]   DOI
10 S. Faÿ, J. Steinhauser, S. Nicolay, and C. Ballif, Thin Solid Films, 518, 2961 (2010). [DOI: http://dx.doi.org/10.1016/j.tsf.2009.09.189]   DOI
11 S. Y. Myong, K. S. Lim, Appl. Phys. Lett., 82, 3026 (2003). [DOI: http://dx.doi.org/10.1063/1.1571651]   DOI
12 S. J. Baik, J. H. Jang, C. H. Lee, W. Y. Cho, and K. S. Lim, Appl. Phys. Lett., 70, 3516 (1997). [DOI: http://dx.doi.org/10.1063/1.119218]   DOI
13 C. G. V. de Walle, Phys. Rev. Lett., 85, 1012 (2000). [DOI: http://dx.doi.org/10.1103/PhysRevLett.85.1012]   DOI
14 L. E. Greene, M. Law, D. H. Tan, M. Montano, J. Goldberger, G. Somorjai, and P. Yang, Nano Letters, 5, 1231 (2005). [DOI: http://dx.doi.org/10.1021/nl050788p]   DOI
15 X. Liu, X. Wu, H. Cao, and R. P. H. Chang, J. Appl. Phys., 95, 3141 (2004). [DOI: http://dx.doi.org/10.1063/1.1646440]   DOI
16 P. K. Chakraborty, G. C. Datta, and K. P. Ghatak, Physica B: Condensed Matter, 339, 198 (2003). [DOI: http://dx.doi.org/10.1016/j.physb.2003.07.001]   DOI