• Title/Summary/Keyword: chemical reaction.

Search Result 9,379, Processing Time 0.034 seconds

Topographic Characteristics, Formation and Classification of Soils Developed in Limestone I. Physico-chemical Characteristics of Limestone Soils Based on Topography (석회암(石灰巖) 토양(土壤)의 지형적(地形的) 특성(特性)과 생성(生成)·분류(分類) I. 지형(地形)에 따른 석회암(石灰巖) 토양(土壤)의 이화학적(理化學的) 특성(特性))

  • Jung, Sug-Jae;Kim, Tai-Soon;Moon, Joon;Um, Ki-Tae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.22 no.4
    • /
    • pp.265-270
    • /
    • 1989
  • Soil properties for the limestone-derived soil were examined to relate soil formation to stratigraphy of parent materials and hillslope positions in Bangjeol Ri, Yeongweol Eup, Gangweon Do. Pyeongchang, Anmi, Yulgog and Mungyeong series were described for topographic positions such as shoulder position, footslope, terrace and local bottom associated with toposequence where the landscape consisted of gently rolling hillslopes and nearly level plains. 1. Pyeongchang, Anmi, Yulgog and Mungyeong series had the standard hue of the 2.5YR, 5YR, 10YR and 2.5Y, respectively. Thus, color sequence of soil could be related to hillslope positions on the landscape. 2. With ascending slope toward summit, the clay content increased while silt content decreased 3. Silt/Clay ratios ranged from 0.27 to 3.76 and it was increased with descending to bottom. It, also, appeared that maturity of soil was higher at summit position than at bottom. 4. Soils developed in limestone were neutral in soil reaction and very low in available $P_2O_5$. OM, available $SiO_2$, CEC, and active Fe in soils seemed to be increased with ascending to summit position.

  • PDF

Effects of Aluminum Addition and Recycle of NaOH Waste Solution on the Quality of Zeolite Synthesized from Fly Ash (알루미늄 첨가 및 NaOH 폐용액의 재활용이 Fly Ash로부터 합성한 Zeolite의 품질에 미치는 영향)

  • Choi, Choong-Lyeal;Lee, Dong-Hoon;Park, Man;Song, Kyung-Sik;Rhee, In-Koo;Choi, Jyung;Kim, Jang-Eok
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.38 no.2
    • /
    • pp.72-77
    • /
    • 2005
  • This study was performed to examine the effects of aluminum addition and recycle of NaOH waste solution on CEC and crystallinity of zeolite synthesized from fly ash. The added aluminum was used as the source of zeolite framework in zeolitization of fly ash. CEC and crystallinity of Na-P1 zeolite synthesized with aluminum addition were increased from 285 to $365cmol_c\;kg^{-1}$ and from 44.3 to 57.1% compared to that of simple hydrothermal treatment, respectively. The recycled NaOH solution did not affect the CEC of reaction products, though the crystallinity was decreased a little. Therefore, the additional supply of aluminum could improve the quality of zeolite synthesized from fly ash and the recycle of NaOH during zeolite synthesis can save the chemical without any adverse effects in the quality of synthesized seolite.

Method development for efficacy testing of veterinary disinfectants using bacteriophage MS2 (Bacteriophage MS2를 이용한 소독제 효력시험 확립에 관한 연구)

  • Rhee, Chae Hong;Kim, Soohee;Han, Bokhee;Kim, Young-Wook;Her, Moon;Jeong, Wooseog
    • Korean Journal of Veterinary Service
    • /
    • v.44 no.3
    • /
    • pp.149-155
    • /
    • 2021
  • In virucidal efficacy testing, the chemical inactivation cannot be determined for all viruses due to the difficulties or the inability to culture sufficiently or the risk of exposure to the viruses. Therefore, disinfectants against these viruses could be evaluated by different methods and surrogate viruses are used as alternative. In this study we developed a method for efficacy testing of veterinary disinfectants using one of the candidate surrogate viruses, bacteriophage MS2, as part of the research on the selection of surrogate viruses for efficiency of efficacy testing of veterinary disinfectants. This method is based on the Animal and Plant Quarantine Agency (APQA) guidelines for efficacy testing of veterinary disinfectants. Bacteriophage and disinfectant are reacted in suspension in accordance with the APQA guidelines and then a newly established double agar layer method is applied for the efficacy test. The double agar layer method is summarized as follows: 1) The bottom agar with 1.5% agar is boiled and cooled before poured into petri dishes at volume of 20 mL, and dried under biological safety cabinet. 2) The top agar with 0.7% agar is boiled and kept at 50℃ before E. coli culture was seeded. 3) The serially diluted bacteriophage MS2-disinfectant mixtures 0.05 mL and E. coli host 0.01 mL (OD600 0.2~0.3) are mixed with 5 mL of top agar and incubate them at 50℃ for 5 min for reaction. 4) The resulting mixture is poured over top of a bottom agar plate and rocked sufficiently to ensure that the top agar covers the entire surface of the bottom agar. 5) The double agar layer is then placed under biological safety cabinet to allow the agar layer to solidify and subsequently incubated at 37℃ for 24 hr. 6) Following incubation, the plates may be inspected for plaques and record results.

Preparation of Electrocatalysts and Comparison of Electrode Interface Reaction for Hybrid Type Na-air Battery (Hybrid type Na-air battery를 위한 촉매들의 제조 및 전극 계면 반응 성능 비교)

  • Kim, Kyoungho
    • Journal of Adhesion and Interface
    • /
    • v.22 no.1
    • /
    • pp.1-7
    • /
    • 2021
  • The importance of high capacity energy storage devices has recently emerged for stable power supply through renewable energy generation. From this point of view, the Na-air battery (NAB), which is a next-generation secondary battery, is receiving huge attention because it can realize a high capacity through abundant and inexpensive raw materials. In this study, activated carbon-based catalysts for hybrid type Na-air batteries were prepared and their characteristics were compared and analysed. In particular, from the viewpoint of resource recycling, activated carbon (Orange-C) was prepared using discarded orange peel, and performance was compared with Vulcan carbon, which is widely used. In addition, a Pt/C catalyst (homemade-Pt/C, HM-Pt/C) was synthesized using a modified polyol method to check whether the prepared activated carbon can be used as a supported catalyst, and a commercial Pt/C catalyst (Commercial Pt/C) and electrochemical performance were compared. The prepared Orange-C exhibited a typical H3 type BET isotherm, which is evidence that micropore and mesopore exist. In addition, in the case of HM-Pt/C, it was confirmed through TEM analysis that Pt particles were evenly distributed on the activated carbon supported catalyst. In particular, the HM-Pt/C-based NAB showed the smallest voltage gap (0.224V) and good voltage efficiency (92.34%) in the 1st galvanostatic charge-discharge test. In addition, the cycle performance test conducted for 20 cycles showed the most stable performance.

Evaluation of SO2 Absorption Efficiency for Calcined Oyster Shell Slurry Using a Simulated Spray Type-flue Gas Desulfurization (FGD) System: A Comparative Study with Limestone Slurry (모사 Spray Type 배연탈황설비를 이용한 소성패각 슬러리의 SO2 흡수능 평가: 석회석과의 비교연구)

  • Kim, Seok-Hwi;Hong, Bum-Uh;Lee, Jin-Won;Cha, Wang-Seok;Kim, Kangjoo;Moon, Bo-Kyung
    • Economic and Environmental Geology
    • /
    • v.52 no.2
    • /
    • pp.119-128
    • /
    • 2019
  • About 300,000 tones of oyster shell are annually produced in Korea and, thus, a massive recycling plan is required. Many desulfurizing studies using oyster shells with chemical composition of $CaCO_3$ have been performed so far; however, most of them have focused on dry desulfurization. This study investigates the possibility of using oyster shells for wet desulfurization after calcination. For this, a simulated wet desulfurization facility of spray type was devised and compared the SOx-stripping characteristics of calcined oyster shell with those of limestone. The calcined oyster shell slurry indicate a better desulfurizability than the slurries of raw shell or limestone because the oyster shell transformed to a more reactive phase ($Ca(OH)_2$) by the calcination and hydration. Because of this reason, when the calcined oyster shell slurries were used, the reaction residue showed the higher gypsum ($CaSO_4{\cdot}2H_2O$) contents than any other cases. In the continuous desulfurization experiments, calcined oyster shell slurry showed a wider pH variation than limestone or raw oyster shell slurries, another clear indication of high reactivity of calcined oyster shells for $SO_2$ absorption. Our study also shows that the efficiency of wet desulfurization can be improved by the use of calcined oyster shells.

Inhalation of Bacterial Cellulose Nanofibrils Triggers an Inflammatory Response and Changes Lung Tissue Morphology of Mice

  • Silva-Carvalho, Ricardo;Silva, Joao P.;Ferreirinha, Pedro;Leitao, Alexandre F.;Andrade, Fabia K.;da Costa, Rui M. Gil;Cristelo, Cecilia;Rosa, Morsyleide F.;Vilanova, Manuel;Gama, F. Miguel
    • Toxicological Research
    • /
    • v.35 no.1
    • /
    • pp.45-63
    • /
    • 2019
  • In view of the growing industrial use of Bacterial cellulose (BC), and taking into account that it might become airborne and be inhaled after industrial processing, assessing its potential pulmonary toxic effects assumes high relevance. In this work, the murine model was used to assess the effects of exposure to respirable BC nanofibrils (nBC), obtained by disintegration of BC produced by Komagataeibacter hansenii. Murine bone marrow-derived macrophages ($BMM{\Phi}$) were treated with different doses of nBC (0.02 and 0.2 mg/mL, respectively 1 and $10{\mu}g$ of fibrils) in absence or presence of 0.2% Carboxymethyl Cellulose (nBCMC). Furthermore, mice were instilled intratracheally with nBC or nBCMC at different concentrations and at different time-points and analyzed up to 6 months after treatments. Microcrystaline $Avicel-plus^{(R)}$ CM 2159, a plant-derived cellulose, was used for comparison. Markers of cellular damage (lactate dehydrogenase release and total protein) and oxidative stress (hydrogen peroxidase, reduced glutathione, lipid peroxidation and glutathione peroxidase activity) as well presence of inflammatory cells were evaluated in brochoalveolar lavage (BAL) fluids. Histological analysis of lungs, heart and liver tissues was also performed. BAL analysis showed that exposure to nBCMC or CMC did not induce major alterations in the assessed markers of cell damage, oxidative stress or inflammatory cell numbers in BAL fluid over time, even following cumulative treatments. $Avicel-plus^{(R)}$ CM 2159 significantly increased LDH release, detected 3 months after 4 weekly administrations. However, histological results revealed a chronic inflammatory response and tissue alterations, being hypertrophy of pulmonary arteries (observed 3 months after nBCMC treatment) of particular concern. These histological alterations remained after 6 months in animals treated with nBC, possibly due to foreign body reaction and the organism's inability to remove the fibers. Overall, despite being a safe and biocompatible biomaterial, BC-derived nanofibrils inhalation may lead to lung pathology and pose significant health risks.

A Study on the Risk of Spontaneous ignition to Butadiene Popcorn Polymer (Butadiene Popcorn Polymer의 자연발화 위험성에 관한 연구)

  • Koo, Chae-Chil;Lee, Jung-Suk;Choi, Jae-Wook
    • Fire Science and Engineering
    • /
    • v.33 no.2
    • /
    • pp.1-8
    • /
    • 2019
  • This study was conducted to investigate the possibility of spontaneous ignition in Butadiene popcorn polymer, which is used as raw material and product in a chemical plant. A component analysis, thermogravimetric analysis, thermal stability analysis, spontaneous ignition point measurement and accelerated velocity calorimetric analysis were performed. As a result of analysis, various kinds of flammable components were measured and thermogravimetric analysis showed a weight loss of 95.6% in air and 89.2% in nitrogen. As a result of the thermal stability analysis, heat generation started at $88^{\circ}C$ in the air atmosphere, and the heat generation rate increased sharply in the vicinity of the natural ignition point ($220^{\circ}C$). The heat generation started at about $70^{\circ}C$ in nitrogen atmosphere, and the two exothermic peak values were observed up to $450^{\circ}C$. As a result of accelerated rate calorimetry, there was no exothermic phenomenon, and the lowest ignition temperature was $211.7^{\circ}C$ as a result of analysis of natural ignition point. Based on the results obtained from the thermal stability evaluation, it is considered that the possibility of inducing the thermal deformation of the column by the heat of reaction is sufficient.

A Review on Electrochemical Model for Predicting the Performance of Lithium Secondary Battery (리튬이차전지 성능 모사를 위한 전기화학적 모델링)

  • Yang, Seungwon;Kim, Nayeon;Kim, Eunsae;Lim, Minhong;Park, Joonam;Song, Jihun;Park, Sunho;Appiah, Williams Agyei;Ryou, Myung-Hyun;Lee, Yong Min
    • Journal of the Korean Electrochemical Society
    • /
    • v.22 no.1
    • /
    • pp.43-52
    • /
    • 2019
  • As the application area of lithium secondary batteries becomes wider, performance characterization becomes difficult as well as diverse. To address this issue, battery manufacturers have to evaluate many batteries for a longer period, recruit many researchers and continuously introduce expensive equipment. Simulation techniques based on battery modeling are being introduced to solve such difficulties. Various lithium secondary battery modeling techniques have been reported so far and optimal techniques have been selected and utilized according to their purpose. In this review, the electrochemical modeling based on the Newman model is described in detail. Particularly, we will explain the physical meaning of each equation included in the model; the Butler-Volmer equation, which represents the rate of electrode reaction, the material and charge balance equations for each phase (solid and liquid), and the energy balance. Moreover, simple modeling processes and results based on COMSOL Multiphysics 5.3a will be provided and discussed.

Synthesis and Structural Characterization of β-Carboline Compounds (β-카볼린 화합물의 합성 및 구조분석)

  • Byeon, Hong-Ju;Han, Min-Hui;Moon, Gi-Seong;Jung, Kyung-Hwan;Lee, Hyang-Yeol
    • Journal of the Korean Applied Science and Technology
    • /
    • v.36 no.2
    • /
    • pp.676-684
    • /
    • 2019
  • The Pictet-Spengler reactions have widely known for the organic synthesis or biosynthesis of biologically active compounds, tetrahydro-${\beta}$-carbolines. We have developed the simple and efficient synthetic method for the synthesis of ${\beta}$-carbolines in water. Their chemical structures were characterized by nmr and UPLC/MS/QTOF. Calculated masses of compound 1 ($C_{17}H_{17}N_2$ 249.1392), 2 ($C_{17}H_{23}N_2$ 255.1861), 3 ($C_{19}H_{21}N_2O_3$ 325.1552) and 4 ($C_{19}H_{19}N_2O$ 279.1497) were almost identical with the detected masses of compound 1 (249.1315), 2 (255.1789), 3 (325.1460) and 4 (279.1364) respectively. Those synthesized four compounds showed strong antibiotic activity against the common E. coli.

Adhesion and Lifetime Extension Properties of Electrical Conductive Paint Stored under of Nitrogen Atmosphere (질소환경에서 보관된 전기전도성 페인트의 접착 및 수명연장 특성)

  • Shin, Pyeong-Su;Kim, Jong-Hyun;Baek, Yeong-Min;Park, Ha-Seung;Park, Joung-Man
    • Journal of Adhesion and Interface
    • /
    • v.20 no.1
    • /
    • pp.9-14
    • /
    • 2019
  • The change of three different reagents for electrical conductive paint using aircraft coating with elapsing time of exposure to different condition was investigated. Three different reagents were poured into the vial bottles, stored in air condition and room temperature and observed with elapsing days. In addition, adhesion property of paint was tried using cross cut tape test after storage of $N_2$ atmosphere. The weight of each different reagent was measured along with elapsing time. To confirm the change of chemical component with exposure of air atmosphere, FT-IR was performed. The weight of part A and Part B decreased slightly whereas the weight of part C decreased rapidly and the precipitation was remained. The part B was cured after exposure of $N_2$ atmosphere and the 2250 cm-1 from FT-IR peak decreased slowly at the same time. It was considered that the water contained in air accelerated the reaction of -NCO functional groups and it caused the curing whereas $N_2$ atmosphere not contained water and it resulted in the retardancy of curing.